Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T12:10:25.387Z Has data issue: false hasContentIssue false

Resonant wave–particle interaction at the half-integer cyclotron harmonics

Published online by Cambridge University Press:  13 March 2009

J. P. M. Schmitt
Affiliation:
Laboratoire do Physique des Milieux lonisés, Groupe de Recherche du Centre National de la Recherche Scientifique, Ecolo Polytechnique, 91128 Palaiseau, France
Y. Lapierre
Affiliation:
Association EURATOM-Commissariat à l'energie Atomique, Département Plasma et Fusion Contrôlée, Centre d'etudes Nucléaires, 92260, Fontonay-aux-Roses, France

Abstract

A single particle is subjected to the combined action of a static uniform magnetic field and an electromagnetic wave. The equations of motion are solved using the perturbation method up to second order. In the results, two different types of second-order effects appear: (i) the always present non-resonant effects, resulting in a ponderomotive drift and a nonlinear cyclotron frequency shift, and (ii) the resonant effects appearing at the half-integer harmonics of the gyrofrequency and leading to perpendicular heating and diffusion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aamodt, R. E. 1970 Phys. Fluids, 13, 2341.CrossRefGoogle Scholar
Aamodt, R. E., Lee, Y. C., Liu, C. S. & Rosenbluth, M. N. 1977 Phys. Rev. Leti. 39, 1660.CrossRefGoogle Scholar
Berger, J. M., Newcomb, W. A., Dawson, J. M., Frieman, E. A., Kulsrud, R. M. & Lenard, A. 1958 Phys. Fluids, 1, 30.Google Scholar
Bogolioubov, N. N. & Mitropolsky, Y. A. 1963 Asymptotical Methods in the Theory of Non-linear Oscillations. Physimat.Google Scholar
Buneman, O. 1961 Phys. Fluids, 4, 669.CrossRefGoogle Scholar
Chang, R. P. H. & Porkolab, M. 1970 Phys. Rev. Lea. 25, 1262.CrossRefGoogle Scholar
Clemmow, P. C. & Dougherty, J. P. 1969 Electrodynamics of Particles and Plasmas, p. 293. Addison-Wesley.Google Scholar
Fukuyama, A., Momota, H., Itatani, R. & Takizuka, T. 1977 Phys. Rev. Lett. 38, 701.CrossRefGoogle Scholar
Golovanivsky, K. S., Punithavelu, A. M. & Rubstov, V. B. 1977 Plasma Phys. 19, 1.CrossRefGoogle Scholar
Karney, C. F. F. & Bers, A. 1977 Phys. Rev. Lett. 39, 550.CrossRefGoogle Scholar
Klima, R. 1965 Czech. J. Phys. B, 15, 697.CrossRefGoogle Scholar
Nayfeh, A. 1973 Perturbation Methods. Wiley.Google Scholar
Ogawa, I. 1962 Jap. J. Appl. Phys. 1, 84.CrossRefGoogle Scholar
Rosenbluth, N. M., Coppi, B. & Sudan, N. R. 1969 Ann. Phys. 55, 248.CrossRefGoogle Scholar
Rudakov, L. I. & Sagdeev, R. Z. 1959 Plasma Physics and the Problem of Controlled Thermonuclear Reactions, vol. III. Leontovitch.Google Scholar
Schmitt, J. P. M. 1976 Phys. Fluids, 19, 245.CrossRefGoogle Scholar
Schmitt, J. P. M. 1977 Proceedings of the Third International Congress on Waves and Instabilities in Plasmas. Ecolo Polytechnique, France.Google Scholar
Schmitt, J. P. M. 1978 Phys. Fluids (to be published).Google Scholar
Smith, G. R. & Kaufman, A. N.. 1975 Phys. Rev. Lett. 34, 1613.CrossRefGoogle Scholar
Taylor, J. B. & Laing, E. W. 1975 Phys. Rev. Lett. 35, 1306.CrossRefGoogle Scholar
Teichmann, J. 1965 Phys. Letters, 16, 119.CrossRefGoogle Scholar