Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T21:03:12.510Z Has data issue: false hasContentIssue false

Scattering of electromagnetic waves by anomalous fluctuations of a magnetized plasma

Published online by Cambridge University Press:  13 March 2009

V. N. Pavlenko
Affiliation:
Institute for Nuclear Research of the Ukrainian Academy of Sciences, U.S.S.R. SU-252028, Kiev-28, Prospekt Nauki, 47
V. G. Panchenko
Affiliation:
Institute for Nuclear Research of the Ukrainian Academy of Sciences, U.S.S.R. SU-252028, Kiev-28, Prospekt Nauki, 47

Abstract

Fluctuations and scattering of transverse electromagnetic waves by density fluctuations in a magnetized plasma in the presence of parametric decay of the pump wave are investigated. The spectral density of electron-density fluctuations is calculated. It is shown that the differential scattering cross-section has sharp maxima at the ion-acoustic and lower-hybrid frequencies when parametric decay of the lower-hybrid pump wave occurs. We note that scattering at the ion-acoustic frequency is dominant. When the pump-wave amplitude tends to the threshold strength of the electric field the scattering cross-section increases anomalously, i.e. there is critical opalescence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhiezer, A. I., Akhiezer, I. A., Polovin, R. V., Sitenko, A. G. & Stepanov, K. N. 1978 Plasma Electrodynamics. Pergamon.Google Scholar
Akhiezer, I. A. & Angeleiko, V. V. 1968 Zh. Eksp. Teor. Fiz. 55, 2291.Google Scholar
Akhiezer, A. I., Prochoda, I. G. & Sitenko, A. G. 1957 Zh. Eksp. Teor. Fiz. 33, 750.Google Scholar
Angeleiko, V. V. & Akhiezer, I. A. 1967 Zh. Eksp. Teor. Fiz. 53, 689.Google Scholar
Bekefi, J. 1971 Radiation Processes in Plasmas. MIR.Google Scholar
Dougherty, J. P. & Farley, D. T. 1960 Proc. R. Soc. Lond. A 259, 79.Google Scholar
Golant, V. E. 1968 Super High-Frequency Methods of Plasma Investigation. Nauka.Google Scholar
Heald, M. & Wharton, G. 1969 Plasma Diagnostics with Microwaves. Wiley.Google Scholar
Klimontovich, Yu. L. 1982 Kinetic Theory of Non-ideal Gases and Non-ideal Plasmas. Pergamon.Google Scholar
Mazzucato, E. 1976 Phys. Rev. Lett. 36, 792.CrossRefGoogle Scholar
Pavlenko, V. N., Panchenko, V. G. & Revenchuk, S. M. 1984 Plasma Phys. Contr. Fusion, 26, 1221.CrossRefGoogle Scholar
Pavlenko, V. N., Panchenko, V. G. & Revenchuk, S. M. 1986 Soviet Phys. JETP, 64, 50.Google Scholar
Porkolab, M. 1974 Phys. Fluids, 17, 1432.CrossRefGoogle Scholar
Porkolab, M. 1977 Phys. Fluids, 20, 2058.CrossRefGoogle Scholar
Porkolab, M. 1978 Nucl. Fusion, 18, 367.CrossRefGoogle Scholar
Rosenbluth, M. N. & Rostoker, N. 1962 Phys. Fluids, 5, 776.CrossRefGoogle Scholar
Sheffield, J. 1975 Scattering of Electromagnetic Radiation. Academic.Google Scholar
Salpeter, E. E. 1960 Phys. Rev. 120, 1528.CrossRefGoogle Scholar
Sitenko, A. G. 1967 Electromagnetic Fluctuations in Plasma. Academic.CrossRefGoogle Scholar
Sitenko, A. G. 1982 Fluctuation and Non-Linear Wave Interaction in Plasmas. Pergamon.Google Scholar
Sitenko, A. G. & Kirochkin, Y. A. 1966 Usp. Fiz. Nauk, 89, 227.CrossRefGoogle Scholar
Surko, C. M. & Slusher, R. E. 1982 Phys. Fluids, 25, 457.Google Scholar