Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:33:39.906Z Has data issue: false hasContentIssue false

Sensitivity of kinetic ballooning mode instability to tokamak equilibrium implementations

Published online by Cambridge University Press:  21 September 2016

H. S. Xie
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027, PR China Fusion Simulation Center, Peking University, Beijing 100871, China
Y. Xiao*
Affiliation:
Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027, PR China
I. Holod
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
Z. Lin
Affiliation:
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA Fusion Simulation Center, Peking University, Beijing 100871, China
E. A. Belli
Affiliation:
General Atomics, P.O. Box 85608, San Diego, CA 92186-5608, USA
*
Email address for correspondence: yxiao@zju.edu.cn

Abstract

Global, first-principles study of the kinetic ballooning mode (KBM) is crucial to understand tokamak edge physics in high-confinement mode (H-mode). In contrast to the ion temperature gradient mode and trapped electron mode, the KBM is found to be very sensitive to the equilibrium implementations in gyrokinetic codes. In this paper, we show that a second-order difference in Shafranov shift or geometric coordinates, or a difference between local and global profile implementations can bring a factor of two or more discrepancy in real frequency and growth rate. This suggests that an accurate global equilibrium is required for validation of gyrokinetic KBM simulations.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belli, E. A. & Candy, J. 2010 Fully electromagnetic gyrokinetic eigenmode analysis of high-beta shaped plasmas. Phys. Plasmas 17 (11), 112314.CrossRefGoogle Scholar
Bourdelle, C., Dorland, W., Garbet, X., Hammett, G. W., Kotschenreuther, M., Rewoldt, G. & Synakowski, E. J. 2003 Stabilizing impact of high gradient of beta on microturbulence. Phys. Plasmas 10 (7), 28812887.CrossRefGoogle Scholar
Candy, J. 2005 Beta scaling of transport in microturbulence simulations. Phys. Plasmas 12 (7), 072307.CrossRefGoogle Scholar
Chen, Y., Parker, S. E., Wan, W. & Bravenec, R. 2013 Benchmarking gyrokinetic simulations in a toroidal flux-tube. Phys. Plasmas 20 (9), 092511.CrossRefGoogle Scholar
Citrin, J., Garcia, J., Gorler, T., Jenko, F., Mantica, P., Told, D., Bourdelle, C., Hatch, D. R., Hogeweij, G. M. D., Johnson, T. et al. 2015 Electromagnetic stabilization of tokamak microturbulence in a high-beta regime. Plasma Phys. Control. Fusion 57 (1), 014032.CrossRefGoogle Scholar
Connor, J. W., Hastie, R. J. & Taylor, J. B. 1978 Shear, periodicity, and plasma ballooning modes. Phys. Rev. Lett. 40 (6), 396399.CrossRefGoogle Scholar
Connor, J. W., Hastie, R. J., Wilson, H. R. & Miller, R. L. 1998 Magnetohydrodynamic stability of tokamak edge plasmas. Phys. Plasmas 5 (7), 26872700.CrossRefGoogle Scholar
Dimits, A. M., Bateman, G., Beer, M. A., Cohen, B. I., Dorland, W., Hammett, G. W., Kim, C., Kinsey, J. E., Kotschenreuther, M., Kritz, A. H. et al. 2000 Comparisons and physics basis of tokamak transport models and turbulence simulations. Phys. Plasmas 7, 969.CrossRefGoogle Scholar
Dudson, B. D., Umansky, M. V., Xu, X. Q., Snyder, P. B. & Wilson, H. R. 2009 Bout++: a framework for parallel plasma fluid simulations. Comput. Phys. Commun. 180 (9), 14671480.CrossRefGoogle Scholar
Gorler, T., Tronko, N., Hornsby, W. A., Bottino, A., Kleiber, R., Norscini, C., Grandgirard, V., Jenko, F. & Sonnendrucker, E. 2016 Intercode comparison of gyrokinetic global electromagnetic modes. Phys. Plasmas 23 (7), 072503.CrossRefGoogle Scholar
Hirshman, S. P. & Whitson, J. C. 1983 Steepest descent moment method for three dimensional magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 35533568.CrossRefGoogle Scholar
Holod, I. & Lin, Z. 2013 Verification of electromagnetic fluid–kinetic hybrid electron model in global gyrokinetic particle simulation. Phys. Plasmas 20 (3), 032309.CrossRefGoogle Scholar
Holod, I., Zhang, W. L., Xiao, Y. & Lin, Z. 2009 Electromagnetic formulation of global gyrokinetic particle simulation in toroidal geometry. Phys. Plasmas 16 (12), 122307.CrossRefGoogle Scholar
Joiner, N., Hirose, A. & Dorland, W. 2010 Parallel magnetic field perturbations in gyrokinetic simulations. Phys. Plasmas 17 (7), 072104.CrossRefGoogle Scholar
Lao, L. L., Greene, J. M., Wang, T. S., Helton, F. J. & Zawadzki, E. M. 1985 Three-dimensional toroidal equilibria and stability by a variational spectral method. Phys. Fluids 28 (3), 869877.CrossRefGoogle Scholar
Lapillonne, X., Brunner, S., Dannert, T., Jolliet, S., Marinoni, A., Villard, L., Gorler, T., Jenko, F. & Merz, F. 2009 Clarifications to the limitations of the s-alpha equilibrium model for gyrokinetic computations of turbulence. Phys. Plasmas 16 (3), 032308.CrossRefGoogle Scholar
Lin, Z. & Chen, L. 2001 A fluid–kinetic hybrid electron model for electromagnetic simulations. Phys. Plasmas 8 (5), 14471450.CrossRefGoogle Scholar
Lin, Z., Ethier, S., Hahm, T. S. & Tang, W. M. 2012 Verification of gyrokinetic particle simulation of device size scaling of turbulent transport. Plasma Sci. Technol. 14 (12), 1125.Google Scholar
Lin, Z. & Hahm, T. S. 2004 Turbulence spreading and transport scaling in global gyrokinetic particle simulations. Phys. Plasmas 11 (3), 10991108.CrossRefGoogle Scholar
Liu, Z. X., Xu, X. Q., Gao, X., Xia, T. Y., Joseph, I., Meyer, W. H., Liu, S. C., Xu, G. S., Shao, L. M. & Ding, S. Y. 2014 Three dimensional nonlinear simulations of edge localized modes on the east tokamak using bout++ code. Phys. Plasmas 21 (9), 090705.CrossRefGoogle Scholar
Meiss, J. D. & Hazeltine, R. D. 1990 Canonical coordinates for guiding center particles. Phys. Fluids B 2 (11), 25632567.CrossRefGoogle Scholar
Moradi, S., Pusztai, I., Mollen, A. & Fulop, T. 2012 Impurity transport due to electromagnetic drift wave turbulence. Phys. Plasmas 19 (3), 032301.CrossRefGoogle Scholar
Moradi, S., Pusztai, I., Voitsekhovitch, I., Garzotti, L., Bourdelle, C., Pueschel, M. J., Lupelli, I., Romanelli, M.& the JET-EFDA Contributors 2014 Core micro-instability analysis of jet hybrid and baseline discharges with carbon wall. Nucl. Fusion 54 (12), 123016.CrossRefGoogle Scholar
Pueschel, M. J., Kammerer, M. & Jenko, F. 2008 Gyrokinetic turbulence simulations at high plasma beta. Phys. Plasmas 15 (10), 102310.CrossRefGoogle Scholar
Snyder, P. B., Groebner, R. J., Hughes, J. W., Osborne, T. H., Beurskens, M., Leonard, A. W., Wilson, H. R. & Xu, X. Q. 2011 A first-principles predictive model of the pedestal height and width: development, testing and iter optimization with the eped model. Nucl. Fusion 51 (10), 103016.CrossRefGoogle Scholar
Tang, W. M., Connor, J. W. & Hastie, R. J. 1980 Kinetic-ballooning-mode theory in general geometry. Nucl. Fusion 20 (11), 1439.CrossRefGoogle Scholar
Tang, T. F., Xu, X. Q., Ma, C. H., Bass, E. M., Holland, C. & Candy, J. 2016 Benchmark studies of the gyro-landau-fluid code and gyro-kinetic codes on kinetic ballooning modes. Phys. Plasmas 23 (3), 032119.CrossRefGoogle Scholar
Wang, Z., Lin, Z., Holod, I., Heidbrink, W. W., Tobias, B., Van Zeeland, M. & Austin, M. E. 2013 Radial localization of toroidicity-induced alfvén eigenmodes. Phys. Rev. Lett. 111, 145003.CrossRefGoogle ScholarPubMed
Wang, E., Xu, X., Candy, J., Groebner, R. J., Snyder, P. B., Chen, Y., Parker, S. E., Wan, W., Lu, G. & Dong, J. Q. 2012 Linear gyrokinetic analysis of a diii-d h-mode pedestal near the ideal ballooning threshold. Nucl. Fusion 52 (10), 103015.CrossRefGoogle Scholar
White, R. B. 2001 The Theory of Toroidally Confined Plasmas. World Scientific Imperial College Press,; (revised second edition 2006).CrossRefGoogle Scholar
Wilson, H. R., Snyder, P. B., Huysmans, G. T. A. & Miller, R. L. 2002 Numerical studies of edge localized instabilities in tokamaks. Phys. Plasmas 9 (4), 12771286.CrossRefGoogle Scholar
Xiao, Y. & Catto, P. J. 2006 Plasma shaping effects on the collisionless residual zonal flow level. Phys. Plasmas 13, 082307.Google Scholar
Xiao, Y., Holod, I., Wang, Z., Lin, Z. & Zhang, T. 2015 Gyrokinetic particle simulation of microturbulence for general magnetic geometry and experimental profiles. Phys. Plasmas 22 (2), 022516.CrossRefGoogle Scholar
Xie, H.-S.2014 Shifted circular tokamak equilibrium with application examples (unpublished notes http://hsxie.me/codes/shafeq/).Google Scholar
Xie, H.-S.2015 Numerical simulations of micro-turbulence in tokamak edge. PhD thesis, Zhejiang University.Google Scholar