Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:11:14.109Z Has data issue: false hasContentIssue false

Small-amplitude supersolitons near supercritical plasma compositions

Published online by Cambridge University Press:  12 July 2017

Carel P. Olivier*
Affiliation:
Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
Frank Verheest
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent, Belgium School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
Shimul K. Maharaj
Affiliation:
South African National Space Agency (SANSA) Space Science, PO Box 32, Hermanus 7200, South Africa Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
*
Email address for correspondence: carel.olivier@nwu.ac.za

Abstract

Supercritical plasma compositions in parameter space are considered for a general fluid model consisting of an arbitrary number of species. This is done by applying a Taylor series expansion of the Sagdeev potential about the acoustic speed and the equilibrium electrostatic potential. A novel finding in this study is the description of small-amplitude supersolitons. Our analysis allows us to determine the plasma compositional criteria for such structures, as well as lower and upper bounds of their velocities and amplitudes. We therefore establish an interesting link between supercritical plasma compositions and the existence of supersolitons. The results are illustrated via a case study where plasmas consisting of cold ions and two Boltzmann electron species are considered.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series. National Bureau of Standards.Google Scholar
Baluku, T. K., Hellberg, M. A. & Verheest, F. 2010 New light on ion acoustic solitary waves in a plasma with two-temperature electrons. Europhys. Lett. 91, 15001.CrossRefGoogle Scholar
Dutta, D. & Sahu, B. 2016 Nonlinear features of electrostatic waves in a plasma with nonthermal-Tsallis distributed electrons. Phys. Plasmas 23, 062313.Google Scholar
Dubinov, A. E. & Kolotkov, D. Yu. 2012a Ion-acoustic supersolitons in plasma. Plasma Phys. Rep. 38, 909912.Google Scholar
Dubinov, A. E. & Kolotkov, D. Yu. 2012b Interpretation of ion-acoustic solitons of unusual form in experiments in SF $_{6}$ -Ar plasma. High Energy Chem. 46, 349353.CrossRefGoogle Scholar
Dubinov, A. E. & Kolotkov, D. Yu. 2012c Ion-acoustic super solitary waves in dusty multispecies plasmas. IEEE Trans. Plasma Sci. 40, 14291433.Google Scholar
Ghosh, S. S. & Sekar Iyengar, A. N. 2014 Effect of cooler electrons on a compressive ion acoustic solitary wave in a warm ion plasma – forbidden regions, double layers, and supersolitons. Phys. Plasmas 21, 082104.CrossRefGoogle Scholar
Hellberg, M. A., Baluku, T. K., Verheest, F. & Kourakis, I. 2013 Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions. J. Plasma Phys. 79, 10391043.Google Scholar
Kakad, A., Lotekar, A. & Kakad, B. 2016 First-ever model simulation of the new subclass of solitons ‘supersolitons’ in plasma. Phys. Plasmas 23, 110702.Google Scholar
Maharaj, S. K., Bharuthram, R., Singh, S. V. & Lakhina, G. S. 2013 Existence domains of dust-acoustic solitons and supersolitons. Phys. Plasmas 20, 083705.Google Scholar
Olivier, C. P., Maharaj, S. K. & Bharuthram, R. 2015 Ion-acoustic solitons, double layers and supersolitons in a plasma with two ion- and two electron species. Phys. Plasmas 22, 082312.CrossRefGoogle Scholar
Olivier, C. P., Verheest, F. & Maharaj, S. K. 2016 A small-amplitude study of solitons near critical plasma compositions. J. Plasma Phys. 82, 905820605.Google Scholar
Paul, A. & Bandyopadhyay, A. 2016 Dust ion acoustic solitary structures in presence of nonthermal electrons and isothermal positrons. Astrophys. Space Sci. 361, 172.Google Scholar
Sagdeev, R. V. 1966 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 4, p. 23. Consultants Bureau.Google Scholar
Singh, S. V. & Lakhina, G. S. 2015 Ion-acoustic supersolitons in the presence of non-thermal electrons. Commun. Nonlinear Sci. Numer. Simul. 23, 274281.Google Scholar
Struik, D. J. 1986 A Source Book in Mathematics: 1200–1800. Princeton University Press (originally published in 1969).Google Scholar
Varghese, S. S. & Ghosh, S. S. 2016 Transitional properties of supersolitons in a two electron temperature warm multi-ion plasma. Phys. Plasmas 23, 082304.Google Scholar
Verheest, F. 2010 Nonlinear acoustic waves in nonthermal dusty or pair plasmas. Phys. Plasmas 17, 062302.Google Scholar
Verheest, F. 2014 Electrostatic nonlinear supersolitons in dusty plasmas. J. Plasma Phys. 80, 787793.Google Scholar
Verheest, F. 2015 Critical densities for Korteweg–de Vries-like acoustic solitons in multi-ion plasmas. J. Plasma Phys. 81, 905810605.CrossRefGoogle Scholar
Verheest, F. & Hellberg, M. A. 2015 Electrostatic supersolitons and double layers at the acoustic speed. Phys. Plasmas 22, 012301.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013a Electrostatic supersolitons in three-species plasmas. Phys. Plasmas 20, 012302.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013b Dust-ion-acoustic supersolitons in dusty plasmas with nonthermal electrons. Phys. Rev. E 87, 043107.Google Scholar
Verheest, F., Hellberg, M. A. & Kourakis, I. 2013c Ion-acoustic supersolitons in plasmas with two-temperature electrons: Boltzmann and kappa distributions. Phys. Plasmas 20, 082309.CrossRefGoogle Scholar
Verheest, F., Lakhina, G. S. & Hellberg, M. A. 2014 No electrostatic supersolitons in two-component plasmas. Phys. Plasmas 21, 062303.Google Scholar
Verheest, F., Olivier, C. P. & Hereman, W. A. 2016 Modified Korteweg–de Vries solitons at supercritical densities in two-electron temperature plasmas. J. Plasma Phys. 82, 905820208.Google Scholar