Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:42:16.771Z Has data issue: false hasContentIssue false

Stabilization of collisional drift waves by kinetic Alfvén waves

Published online by Cambridge University Press:  13 March 2009

C. Kar
Affiliation:
Saha Institute of Nuclear Physics, AF/1, Bidhannagar, Calcutta 700064, India
S. K. Majumdar
Affiliation:
Saha Institute of Nuclear Physics, AF/1, Bidhannagar, Calcutta 700064, India
A. N. Sekar Iyengar
Affiliation:
Saha Institute of Nuclear Physics, AF/1, Bidhannagar, Calcutta 700064, India

Abstract

We have investigated a mode-coupling mechanism between kinetic Alfvén waves and a collisional drift wave in an inhomogeneous cylindrical plasma. Drift waves satisfying the condition k⊥D > 1/r0 (where r0 is the radius of the plasma cylinder) are stabilized by the low-frequency ponderomotive force generated by the kinetic Alfvén waves. For typical plasma parameters and a moderate level of Alfven-wave intensity the stabilization factor is comparable to the destabilization mechanism due to collisions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1970 Handbook of Mathematical Functions. Dover.Google Scholar
Amagashi, Y. 1986 Phys. Rev. Lett. 57, 2807.Google Scholar
Amagashi, Y., Saeki, K. & Donnelly, I. J. 1986 Plasma Phys. Contr. Fusion 31, 675.Google Scholar
Antani, S. N. & Kaup, D. J. 1984 Phys. Fluids 27, 1904.CrossRefGoogle Scholar
Appert, K., Collins, G. A., Hellsten, T., Vaclavik, J. & Villard, L. 1986 Plasma Phys. Contr. Fusion 28, 133.Google Scholar
Bessen, G. et al. 1986 Plasma Phys. Contr. Fusion 28, 1291.Google Scholar
Chen, L. & Cheng, C. Z. 1980 Phys. Fluids 23, 2242.CrossRefGoogle Scholar
Cheng, C. Z. & Okuda, H. 1978 Nucl. Fusion 18, 587.Google Scholar
Choi, D. I. & Horton, W. 1980 Phys. Fluids 23, 356.CrossRefGoogle Scholar
Connor, J. W., Hastie, R. J. & Taylor, J. B. 1979 Nucl. Fusion 19, 1223.Google Scholar
Cross, R. C., Blackwell, B. D., Brennan, M. H., Borg, G. & Lehare, J. A. 1982 Proceedings of the 3rd Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, 177 (ed. Gormezano, C., Leotta, G. G. & Sindoni, E.). Published for Commission of European Communities by Pergamon Press.Google Scholar
Guzdar, P. N., Chen, L., Kaw, P. K. & O'Berman, C. O. 1973 Phys. Rev. Lett. 40, 1566.CrossRefGoogle Scholar
Hasegawa, A. & Chen, L. 1976 Phys. Fluids 19, 1924.CrossRefGoogle Scholar
Hastie, R. J., Hesketh, K. W. & Taylor, J. B. 1979 Nucl. Fusion 19, 1223.CrossRefGoogle Scholar
Iyengar, A. N. S., Basu, J., Chowdhury, S., Hui, A. K., Munshi, S., Majundar, S. K. & Ranjan, P., 1989 Proceedings of International Conference on Plasma Physics, New Delhi (ed. P. K. Kaw & A. Sen), vol. 1, p. 29.Google Scholar
Kadomtsev, B. B. 1965 Plasma Turbulence, p. 82. Academic.Google Scholar
Kamada, Y., Fujita, Y., Murakami, Y., Oshira, T., Saitoh, K., Fuke, Y., Utsumi, M., Yoshida, Z. & Inoue, N. 1989 Nucl. Fusion 29, 713.Google Scholar
Kar, C., Sundaram, A. K. & Sen, A. 1987 Phys. Fluids 30, 2457.Google Scholar
Liewer, P. C. 1985 Nucl. Fusion 5, 543.Google Scholar
Liu, C. S. & Tripathi, V. K. 1980 Phys. Fluids 23, 345.CrossRefGoogle Scholar
Robinson, D. C. & Todd, T. N. 1982 Phys. Rev. Lett. 48, 1359.Google Scholar
Ross, D. W. & Mahajan, S. W. 1978 Phys. Rev. Lett. 40, 324.Google Scholar
Ross, D. W. & Mahajan, S. M. 1982 Phys. Fluids 25, 652.Google Scholar
Schmidt, P., Banick, G., Greene, P. & Robertson, G. 1991 Phys. Fluids B 3, 1113.Google Scholar
Shukla, P. K. & Yu, M. 1981 Phys. Lett. 82 A, 18.Google Scholar
Sundaram, A. K. & Kaw, P. K. 1973 Nucl. Fusion 13, 901.Google Scholar
Tsang, K. T., Catto, P. J. & Whitson, J. G. 1978 Phys. Rev. Lett. 40, 327.Google Scholar