Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T22:48:25.395Z Has data issue: false hasContentIssue false

A stable stationary solution of compressible magnetohydrodynamics associated with conservation of modified kinetic helicity

Published online by Cambridge University Press:  13 March 2009

Joseph Norwood
Affiliation:
A.E. Labs Inc., P.O. Box 366, Welaka, Florida 32093, U.S.A.

Abstract

It is shown that, in addition to magnetic helicity and cross-helicity, a modified form of kinetic helicity is also conserved in MHD fluids if the Hall effect is taken into account. The consequence of including this modified kinetic helicity as a conservation integral in a variation of the system energy is the emergence of an unconditionally MHD-stable solution that is realized in migma plasmas and may be expected to emerge as a self-organized configuration from an initially turbulent magnetofluid.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al Salameh, D., Channon, S., Cheo, B. R., Leverton, R., Maglich, B. C., Menasian, S., Miller, R. A., Nering, J. & Wu, C. Y. 1985 Phys. Rev. Lett. 54, 796.CrossRefGoogle Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 Proc. R. Soc. Lond. A 244, 17.Google Scholar
Bostick, W. H., Prior, W., Grunberger, L. & Emmert, G. 1966 Phys. Fluids, 9, 2079.Google Scholar
Busemann, A. 1962 Relations Between Aerodynamics and Magnetohydrodynamics. NASA SP-25, pp. 18.Google Scholar
Chen, L. 1985 Second Review Meeting of Aneutronic Power Feasibility Study Group, Paper 7.Google Scholar
Cowling, T. G. 1934 Mon. Not. R. Astron. Soc. 94, 39.CrossRefGoogle Scholar
Hasegawa, A. 1985 Adv. Phys. 34, 1.CrossRefGoogle Scholar
Moffatt, H. K. 1969 J. Fluid Mech. 35, 117.CrossRefGoogle Scholar
Norwood, J. 1988 Nucl. Instrum. Meth. A 271, 89.CrossRefGoogle Scholar
Sudan, R. N. 1981 Modern Plasma Physics. IAEA-SMR-61/114, pp. 477488.Google Scholar
Voslamber, D. & Callebaut, D. K. 1962 Phys. Rev. 128, 2016.CrossRefGoogle Scholar
Wells, D. R. & Norwood, J. 1969 J. Plasma Phys. 3, 21.CrossRefGoogle Scholar
Wentzel, D. 1960 Astrophys. J. Suppl. 5, 187.CrossRefGoogle Scholar
Witalis, E. A. 1968 Plasma Phys. 10, 747.CrossRefGoogle Scholar
Woltjer, L. 1958 a Proc. Natl Acad. Sci. 44, 489.CrossRefGoogle Scholar
Woltjer, L. 1958 b Proc. Natl Acad. Sci. 44, 833.CrossRefGoogle Scholar
Woltjer, L. 1959 a Astrophys. J. 130, 400.CrossRefGoogle Scholar
Woltjer, L. 1959 b Astrophys. J. 130, 405.CrossRefGoogle Scholar
Woltjer, L. 1960 Rev. Mod. Phys. 32, 914.CrossRefGoogle Scholar
Wright, B. L. & Schoenberg, K. F. 1986 Phys. Today 39, S-63.Google Scholar