Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:03:43.282Z Has data issue: false hasContentIssue false

Theoretical analyses of current amplification in a new kind of plasma magnetic flux compression generator

Published online by Cambridge University Press:  13 December 2013

Xiang Xu*
Affiliation:
School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, P. R. China
Lin Chen
Affiliation:
Institute of Fluid Physics, China Academy of Engineering Physics (CAEP), Mianyang, P. R. China
Cheng-Zheng Qian
Affiliation:
School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, P. R. China
You-Nian Wang
Affiliation:
School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, P. R. China
*
Email address for correspondence: xuxiang@dlut.edu.cn

Abstract

The physics process in a new kind of plasma magnetic field compression generator (MFCG) without the preliminary magnetic field is studied with a zero-dimensional theoretical model. It is found that the plasma liner is accelerated in the conduction stage and is decelerated in the compression stage. The geometry parameters of MFCG effect the load current amplification significantly. The geometry parameters need to be chosen carefully to make the acceleration space and the deceleration space being suitable for the generator circuit and the injected plasma liner to obtain the optimal amplification factor. For the given driven circuit, the typical amplification factor of load current is greater than 2.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altgibers, L. L., Brown, M. D. J., Grishnaev, I., Novac, B. M., Smith, I. R., Tkach, Y. and Tkach, I. 2000 Magnetocumulative Generators. New York: Springer.Google Scholar
Appelgren, P., Brenning, N., Hurtig, T., Larsson, A., Novac, B. M. and Nyholm, S. E. 2008 IEEE Trans. Plasma Sci. 36, 2662.CrossRefGoogle Scholar
Felber, F. S., Wessel, F. J., Wild, N. C., Rahman, H. U., Fisher, A. and Fowler, C. M. 1988 J. Appl. Phys. 64, 3831.Google Scholar
Fowler, C. M., Garn, W. B. and Caird, R. S. 1960 J. Appl. Phys. 31, 588.Google Scholar
Gasilov, V. A., D'yachenko, S. V., Chuvatin, A. S., Ol'khovskaya, O. G., Boldarev, A. S., Kartasheva, E. L. and Bagdasarov, G. A. 2010 Math. Models Comput. Simul. 2, 375.Google Scholar
Huba, J. D. 2000 NRL Plasma Formulary, NRL/PU6790-00-426. Washington, DC: Naval Research Laboratory.Google Scholar
Sorokin, S. A. 2009 Tech. Phys. 54, 805.Google Scholar
Sorokin, S. A. 2010a IEEE Trans. Plasma Sci. 38, 1723.CrossRefGoogle Scholar
Sorokin, S. A. 2010b In: Proc. 16th Int. Symp. on High Current Electronics, Tomsk, Russia, 19–24 September 2010, pp. 227229.Google Scholar
Weber, B. V., et al. 2008 IEEE Trans. Plasma Sci. 36, 443.CrossRefGoogle Scholar
Xu, F. K. and Wu, D. 2012 J. Appl. Phys. 111, 094508.Google Scholar