Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:29:37.856Z Has data issue: false hasContentIssue false

Theory and computer simulation of electron beam-plasma interactions in unbounded systems

Published online by Cambridge University Press:  13 March 2009

S. Cuperman
Affiliation:
Department of Physics and Astronomy, Tel-Aviv University, Ramat Aviv, Israel
I. Roth
Affiliation:
Department of Physics and Astronomy, Tel-Aviv University, Ramat Aviv, Israel
W. Bernstein
Affiliation:
Space Environment Laboratory, ERL-NOAA, Boulder, Colorado, U.S.A.

Abstract

Computer simulation experiments of linear and nonlinear collisionless interactions between electron beams and background plasmas, for conditions relevant to active magnetospheric experiments, were carried out. Both electrostatic and electromagnetic interactions were simultaneously considered. The beam-plasma systems were infinite and homogeneous.

The relative beam concentrations considered were ε ≡ nb/np, = 1, 0·1 and 0·01. In all cases, the background plasma (1 eV thermal energy) was penetrated by an electron beam of 1 keV streaming energy and 5 % thermal spread in the streaming direction.

The paper presents a full description of the results and a brief discussion of their relevance to magnetospheric active experiments.

The off-angle propagation case in unmagnetized plasmas is also briefly discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Buneman, O. 1959 Phys. Rev. 115, 503.CrossRefGoogle Scholar
Cuperman, S., & Salu, Y. 1973 J. Geophys. Res. 78, 4792.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. Academic.Google Scholar
Dum, C. T., & Sudan, R. N. 1971 Phys. Fluids, 14, 414.Google Scholar
Drummond, W. E., Malbero, J. H., O'Neill, T. M., & Thompson, J. R. 1970 Phys. Fluids, 13, 2422.CrossRefGoogle Scholar
Drummond, W. E., & Pines, D. 1962 Nucl. Fusion Suppl. 3, 1049.Google Scholar
Hess, W. N., Trichel, M. C., Davis, T. N., Beggs, W. B., Kraft, G. E., Stassinopoulis, E., & Maier, E. J. R. 1971 J. Geophys. Res. 79, 2343.Google Scholar
Ivanov, A. A., & Rudakov, L. I. 1967 Soviet Phys. JETP, 24, 1027.Google Scholar
Kainer, S., Dawson, J., Coffey, T., & Shanny, R. 1972 Phys. Fluids, 15, 593.Google Scholar
McEntire, R. W., Hendrickson, R. A., & Winckler, J. R. 1974 J. Geophys. Res. 79, 16.Google Scholar
Montgomery, D. C., & Tidman, D. A. 1964 Plasma Kinetic Theory. McGraw-Hill.Google Scholar
Morse, R. L., & Nielson, C. W. 1971 Phys. Fluids, 14, 830.CrossRefGoogle Scholar
Nishikawa, K. J. 1968 J. Phys. Soc. Japan, 24, 916, 1152.CrossRefGoogle Scholar
O'Neill, T. M., Winfrey, J. M., & Malmberg, J. H. 1971 Phys. Fluids, 14, 1204.Google Scholar
Papadopoulos, K., Goldstein, M. L., & Smith, R. A. 1974 Astrophys. J. 190, 175.CrossRefGoogle Scholar
Pierce, J. R. 1948 J. Appl. Phys. 19, 231.CrossRefGoogle Scholar
Rudakov, L. I., & Sudan, R. N. 1973 Plasma Heating by Intense Relativistic Beams, Int. Centre for Theorot. Physics, Triesto. I.C./73/124.Google Scholar
Sagdeev, R. Z., & Galeev, A. A. 1969 Non Linear Plasma Theory. Benjamin.Google Scholar
Tsytovich, V. N. 1970 Non-Linear Effects in Plasma. Plonum.Google Scholar
Vedenov, A. V., Velikov, E. P., & Sagdeev, R. Z. 1962 Nucl. Fusion Suppl. Pt. 2, 465.Google Scholar
Vedenov, A. V., & Rudakov, L. I. 1965 Soviet Physics, Dokiady, 9. 1073.Google Scholar