Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T21:48:57.544Z Has data issue: false hasContentIssue false

Waves in a 1D electrorheological dusty plasma lattice

Published online by Cambridge University Press:  05 May 2015

M. Rosenberg*
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
*
Email address for correspondence: rosenber@ece.ucsd.edu

Abstract

The behavior of waves in a one-dimensional (1D) dusty plasma lattice where the dust interacts via Yukawa and electric dipole interactions is discussed theoretically. This study is motivated by recent reports on electrorheological dusty plasmas (e.g. Ivlev et al. 2008Phys. Rev. Lett.100, 095003) where the dipole interaction arises due to an external uniaxial AC electric field that distorts the Debye sphere surrounding each grain. Application to possible dusty plasma experimental parameters is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Feldmann, J. D., Kalman, G. J. and Rosenberg, M. 2006 Magnetic dipolar interaction in two-dimensional complex plasmas. J. Phys. A: Math. Gen. 39, 4549.Google Scholar
Fortov, V. et al. 2005b The project ‘Plasmakristall-4’ (PK-4) – a new stage in investigations of dusty plasmas under microgravity conditions: first results and future plans. Plasma Phys. Control. Fusion 47, B537.Google Scholar
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005a Complex(dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1.Google Scholar
Hamaguchi, S., Farouki, R. T. and Dubin, D. H. E. 1997 Triple point of Yukawa systems. Phys. Rev. E 56, 4671.Google Scholar
Homann, A., Melzer, A., Peters, S., Madani, R. and Piel, A. 1998 Laser-excited dust lattice waves in plasma crystals. Phys. Lett. A 242, 173.Google Scholar
Ivlev, A. V. and Morfill, G. 2000 Anisotropic dust lattice modes. Phys. Rev. E 63, 016409.Google Scholar
Ivlev, A. V. et al. 2008 First observation of electrorheological plasmas. Phys. Rev. Lett. 100, 095003.Google Scholar
Ivlev, A. V. et al. 2010 Electrorheological complex plasmas. IEEE Trans. Plasma Sci. 38, 733.Google Scholar
Khrapak, S. A., Ivlev, A. V. and Morfill, G. E. 2004, Momentum transfer in complex plasmas. Phys. Rev. E 70, 056405.Google Scholar
Khrapak, S. A. et al. 2005 Particle charge in the bulk of gas discharges. Phys. Rev. E 72, 016406.Google Scholar
Kittel, C. 1971 Introduction to Solid State Physics. New York: Wiley, ch. 5.Google Scholar
Kompaneets, R., Morfill, G. E. and Ivlev, A. V. 2009 Design of new binary interaction classes in complex plasmas. Phys. Plasmas 16 043705.Google Scholar
McKelvey, J. P. 1993 Solid State Physics for Engineering and Materials Science. Malabar, Fl: Krieger Publishing Co, ch. 3.Google Scholar
Melandsoe, F. 1996 Lattice waves in dust plasma crystals. Phys. Plasmas 3, 3890.Google Scholar
Murillo, M. S. and Rosenberg, M. 1998 Waves in dusty plasma crystals with dipole interactions. In: CP446, Physics of Dusty Plasmas (eds. Horanyi, M. et al.). AIP, Melville, NY, pp. 131134.Google Scholar
Rocker, T. B., Ivlev, A. V., Zhdanov, S. K. and Morfill, G. E. 2014 Effect of strong wakes in two-dimensional plasma crystals. Phys. Rev. E 89, 013104.Google Scholar
Shukla, P. K. and Eliasson, B. 2009 Colloquium: fundamentals of dust-plasma interactions. Rev. Mod. Phys. 81, 25.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002, Introduction to Dusty Plasma Physics. Bristol: Institute of Physics Publishing, ch. 2.Google Scholar
Totsuji, H., Totsuji, C., Takahashi, K. and Adachi, S. 2014 Study of cylindrical dusty plasmas in PK-4J; Theory and simulations. Int. J. Microgravity Sci. Appl. 31, 55.Google Scholar
Verma, M. P., Mishra, S. K. and Sodha, M. S. 2013 Effect of the inter-grain attractive potential on lattice dynamics in complex plasmas. J. Plasma Phys. 79, 55.Google Scholar
Vladimirov, S. V., Shevchenko, P. V. and Cramer, N. 1998 Low-frequency modes in the dust-plasma crystal. Phys. Plasmas 5, 4.Google Scholar
Wang, C. H. and Wang, X. G. 2006 Effects of dipole moment on the lattice waves in one-dimensional dust chain. Chin. Phys. Lett. 23, 403.Google Scholar
Yaroshenko, V. V., Morfill, G. E. and Samsonov, D. 2004 Vertical oscillations of paramagnetic particles in complex plasmas. Phys. Rev. E 69, 016410.Google Scholar