Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T04:22:53.606Z Has data issue: false hasContentIssue false

An energy principle for soliton solutions with higher nonlinearities

Published online by Cambridge University Press:  13 March 2009

E. W. Laedke
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, Federal Republic of Germany
K. H. Spatschek
Affiliation:
Fachbereich Physik, Universität Essen, D-4300 Essen, Federal Republic of Germany

Abstract

The two-dimensional stability of Langmuir solitons in investigated taking into account the dynamic ion response and electron nonlinearities. A variational principle for the growth rate is derived which allows one to determine growth rates and regions of instability by standard numerical procedures. The validity of previous methods using trial functions and the variation of action method, as well as the limitations of the corresponding results for the growth rates, neglecting the dynamic ion response, are critically examined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D., Bondeson, A. & Lisak, M. 1979 J. Plasma Phys. 21, 259.CrossRefGoogle Scholar
Gibbons, J., Thronhill, S. G., Wardrop, M. J. & Ter, Harr D. 1977 J. Plasma Phys. 17, 153.Google Scholar
Infeld, E. & Rowlands, G. 1977 Plasma Phys. 19, 343.CrossRefGoogle Scholar
Kadomtsev, B. B. & Petviashvili, V. I. 1970 Soviet Phys. Doklady, 11, 539.Google Scholar
Katyshev, , Yu., V., Makhaldiani, N. V. & Makhankov, V. G. 1978 Phys. Lett. 66 A, 456.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1978 Phys. Rev. Lett. 41, 1798.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1979a Phys. Rev. Lett. 42, 1534.Google Scholar
Laedke, E. W. & Spatschek, K. H. 1979b Phys. Fluids (in press).Google Scholar
Laedke, E. W. & Spatschek, K. H. 1979c J. Math. Phys. (in press).Google Scholar
Laval, G., Mercier, C. & Pellat, R. 1965 Nucl. Fusion, 5, 156.Google Scholar
Schamel, H., Yu, M. Y. & Shukla, P. K. 1977 Phys. Fluids, 20, 1286.Google Scholar
Schmidt, G. 1975 Phys. Rev. Lett. 34, 724.Google Scholar
Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 19, 387.CrossRefGoogle Scholar
Tasso, H. & Mulser, P. 1978 Z. Naturforsch. 33A, 855.Google Scholar
Thornhill, S. G. & Ter, Harr D. 1978 Phys. Rep. 43C, 43.CrossRefGoogle Scholar
Wardrop, M. J. 1978 Phys. Lett. 68 A, 109.Google Scholar
Wardrop, M. J. & Ter, Haar D. 1979 Physica Scripta, (in press).Google Scholar
Wong, A. Y. & Quon, B. H. 1975 Phys. Rev. Lett. 34, 1499.CrossRefGoogle Scholar
Yajima, N. 1974 Prog. Theor. Phys. 52, 1066.CrossRefGoogle Scholar
Yu, M. Y., Shukla, P. K. & Spatschek, K. H. 1978 J. Plasma Phys. 20, 189.Google Scholar
Zakharo, V. E. 1972 Soviet Phys. JETP, 35, 908.Google Scholar
Zakharov, V. E. & Rubenchik, A. M. 1974 Soviet Phys. JETP, 38, 494.Google Scholar