Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:46:18.507Z Has data issue: false hasContentIssue false

An exact solution in a gravitating fluid with a density-dependent viscosity

Published online by Cambridge University Press:  04 November 2013

NIKHIL CHAKRABARTI
Affiliation:
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064, India (nikhil.chakrabarti@saha.ac.in)
HANS SCHAMEL
Affiliation:
Theoretical Physics, University of Bayreuth, D-95440 Bayreuth, Germany

Abstract

An exact nonlinear solution for a cold fluid in presence of a gravitational field and viscous dissipation is obtained using Lagrange variable. It is shown that with a density-dependent viscosity the nonlinear equation can be exactly solved. The solution indicates that in absence of viscosity and initial fluid velocity shear, density collapse occurs at time of the order of inverse Jeans frequency. The effect of viscosity is to delay the collapse but it can not halt the collapse. The initial fluid velocity shear can act in both directions: a positive one leads to delay, a negative one to a speeding up of the density collapse. This nonlinear solution may have some bearing with the structure formations in the universe.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avinash, K. 2007a Phys. Plasmas 14, 012904.CrossRefGoogle Scholar
Avinash, K. 2007b Phys. Plasmas 14, 093701.CrossRefGoogle Scholar
Avinash, K., Eliasson, B. and Shukla, P. K. 2006 Phys. Lett. A 353, 105.CrossRefGoogle Scholar
Avinash, K. and Shukla, P. K. 2006 New J. Phys. 8, 2.CrossRefGoogle Scholar
Chakrabarti, N., Maity, C. and Schamel, H. 2011 Phys. Rev. Lett. 106, 145003.CrossRefGoogle Scholar
Chakrabarti, N., Maity, C. and Schamel, H. 2013 Phys. Rev. E. 88, 023102.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamics and Hydromagnetic Stability. Oxford, UK: Oxford University Press.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory. New York: Academic Press.Google Scholar
Davidson, R. C. and Schram, P. P. 1968 Nucl. Fusion 8, 183.CrossRefGoogle Scholar
Dawson, J. M. 1959 Phys. Rev. 113, 383.CrossRefGoogle Scholar
Eliasson, B., Avinash, K. and Shukla, P. K. 2008 AIP Conf. Proc. 1041, 109.CrossRefGoogle Scholar
Griv, E., Gedalim, M. and Yuan, C. 2002 Astron. Astrophys. 383, 338.CrossRefGoogle Scholar
Infeld, E., Rowlands, G. and Skorupsky, A. A. 2009 Phys. Rev. Lett. 102, 145005.CrossRefGoogle Scholar
Pandey, B. P., Avinash, K. and Dwivedi, C. B. 1994 Phys. Rev. E 49, 5599.CrossRefGoogle Scholar
Sack, Ch. and Schamel, H. 1987 Phys. Reports 156, 311.CrossRefGoogle Scholar
Schamel, H. 2004 Phys. Reports 392, 279.CrossRefGoogle Scholar