Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T18:04:06.178Z Has data issue: false hasContentIssue false

Analysis of the interaction between particles in non-ideal quasi-equilibrium extended systems

Published online by Cambridge University Press:  10 February 2010

O. S. VAULINA
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia
E. A. LISIN
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia (eaLisin@yandex.ru)
A. V. GAVRIKOV
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia (eaLisin@yandex.ru)
O. F. PETROV
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia (eaLisin@yandex.ru)
V. E. FORTOV
Affiliation:
Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412, Russia Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia (eaLisin@yandex.ru)

Abstract

Two techniques for the analysis of the interaction between particles in non-ideal quasi-equilibrium extended systems are considered. The first technique is based on a solution of the inverse problem describing the movement of dust particles by a system of Langevin equations. The second technique proceeds from the basic integral approaches of statistical physics. The conditions for the correct use of these techniques are presented, together with the results of their experimental application for the analysis of inter-grain interactions in the dusty plasma of radio frequency discharge.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Ailawadi, N. K. 1980 Phys. Rep. 57, 241.CrossRefGoogle Scholar
[2]March, N. H. and Tosi, M. P.Introduction to Liquid State Physics (World Scientific, Singapore, 1995).Google Scholar
[3]Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 25.CrossRefGoogle Scholar
[4]Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Phys. Rep. 412, 1.CrossRefGoogle Scholar
[5]Konopka, U., Ratke, L. and Thomas, H. M. 1997 Phys. Rev. Lett. 79, 1269.CrossRefGoogle Scholar
[6]Fortov, V. E., Nefedov, A. P., Molotkov, V. I. et al. 2001 Phys. Rev. Lett. 87, 205002.CrossRefGoogle Scholar
[7]Fortov, V. E., Petrov, O. F., Usachev, A. D. and Zobnin, A. V. 2004 Phys. Rev. E 70, 0046415.Google Scholar
[8]Pieper, J. B. and Goree, J. 1996 Phys. Rev. Lett. 77, 3137.CrossRefGoogle Scholar
[9]Homann, A., Melzer, A. and Piel, A. 1996 Phys. Rev. E 59, 3835.Google Scholar
[10]Vaulina, O. S., Lisin, E. A., Gavrikov, A. V., Petrov, O. F. and Fortov, V. E. 2009 Phys. Rev. Lett. 103, 035003.CrossRefGoogle Scholar
[11]Vaulina, O. S. and Lisin, E. A. 2009 Phys. Plasmas 16, 113702.CrossRefGoogle Scholar
[12]Vaulina, O. S., Petrov, O. F., Gavrikov, A. V. and Fortov, V. E. 2007 Plasma Phys. Rep. 33, 278.CrossRefGoogle Scholar
[13]Fortov, V. E., Gavrikov, A. V., Petrov, O. F. and Shakhova, I. A. 2007 Phys. Plasmas 14, 040705.CrossRefGoogle Scholar
[14]Fortov, V. E., Petrov, O. F. and Vaulina, O. S. 2008 Phys. Rev. Lett. 101, 195003.CrossRefGoogle Scholar
[15]Vaulina, O. S., Adamovich, X. G., Petrov, O. F. and Fortov, V. E. 2008 Phys. Rev. E 77, 066403 (2008); Phys. Rev. E 77, 066404.Google Scholar
[16]Vaulina, O. S., Vladimirov, S. V., Petrov, O. F. and Fortov, V. E. 2004 Plasma Phys. 11, 3234.CrossRefGoogle Scholar
[17]Vaulina, O. S. and Drangevski, I. E. 2006 Phys. Scripta T 73, 577586.CrossRefGoogle Scholar
[18]Khrapak, S. A., Klumov, B. A. and Morfill, G. E. 2008 Phys. Rev. Lett. 100, 225003.CrossRefGoogle Scholar
[19]Yakubov, I. T. and Khrapak, A. G. 1989 Sov. Tech. Rev. B: Therm. Phys. 2, 269.Google Scholar
[20]Ziman, J. M.Models of Disorder (Cambridge University Press, New York, 1979).Google Scholar