Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:11:13.109Z Has data issue: false hasContentIssue false

Behaviour of runaway electrons in the HL-2A plasmas with LHCD and ECCD

Published online by Cambridge University Press:  26 October 2015

J. X. Zhu*
Affiliation:
School of Physics and Mecha-tronic Engineering, Sichuan University of Arts and Science, Dazhou 635000, China School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
L. M. Yao
Affiliation:
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Y. P. Zhang
Affiliation:
Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
J. W. Yang
Affiliation:
Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, China
*
Email address for correspondence: zjxlfg@126.com

Abstract

The behaviour of runaway electrons have been investigated in lower hybrid current drive (LHCD) and electron cyclotron current drive (ECCD) plasmas as well as the LHCD only plasmas in the HL-2A tokamak. The fast electrons generated by lower hybrid waves (LHWs) and electron cyclotron waves (ECWs) can act as a seed population for runaway electrons. In the LHCD only discharges, a large number of runaway electrons are produced after the termination of lower hybrid (LH) power by conversion of fast electrons into runaway electrons due to the fast electron tail which extends above the runaway critical energy. However, in contrast to LHCD only discharges, during the simultaneous application of LHCD and ECCD discharges, runaway electrons cannot be created by the termination of LH power when the ECCD is on duty. The runaway production is observed to be enhanced until the EC power termination. The loop voltage increase due to the termination of EC power gives rise to a decline in the critical runaway energy, which leads to some of the energetic fast electrons converting into runaway electrons via the acceleration from the toroidal electric field. That is, the fast electrons created by waves can be accelerated into the runaway regime due to the Dreicer process.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ando, A., Ogura, K., Tanaka, H., Iida, M., Ide, S., Nakamura, M., Maekawa, T., Terumichi, Y. & Tanaka, S. 1986 Enhancement of efficiency for lower hybrid current drive by electron cyclotron heating in the wt-2 tokamak. Nucl. Fusion 26 (1), 107111.Google Scholar
Bartiromo, R., Barbato, E., Gabellieri, L., Spaziani, A., Tuccillo, A. A., Leuterer, F., Soldner, F. X., Gehre, O. & Murmann, H. D. 1993 Fast electron confinement during lower hybrid experiments in asdex. Nucl. Fusion 33 (10), 14831492.Google Scholar
Chen, Z. Y., Fang, D., Dai, F., Duan, Z. Q., Zhu, J. X., Sun, W. M., Wan, B. N. & Shi, Y. J. 2011 Transport of fast electrons in lower hybrid current drive plasmas in the HT-7 tokamak. Phys. Scr. 83 (4), 045502.Google Scholar
Chen, Z. Y., Wan, B. N., Lin, S. Y., Shi, Y. J., Hu, L. Q., Younis, J., Gong, X. Z., Shan, J. F., Liu, F. K., Ding, B. J. et al. 2006 Dynamics of runaway electrons in lower hybrid current drive plasmas in the HT-7 tokamak. Plasma Phys. Control. Fusion 48 (10), 14891499.Google Scholar
Chen, Z. Y., Wan, B. N., Ling, B. L., Gao, X., Ti, A., Du, Q., Sajjad, S., Lin, S. Y., Shi, Y. J.& the HT-7 Team 2008 Enhancement of runaway production in lower hybrid current driven plasma with ibw heating in the HT-7 tokamak. Plasma Phys. Control. Fusion 50 (1), 015001.Google Scholar
Esposito, B., Martın-Solıs, J. R., Poli, F. M., Mier, J. A., Sanchez, R. & Panaccione, L. 2003 Dynamics of high energy runaway electrons in the frascati tokamak upgrade. Phys. Plasmas 10 (6), 23502360.Google Scholar
Gill, R. D. 1993 Generation and loss of runaway electrons following disruptions in jet. Nucl. Fusion 33 (11), 16131624.Google Scholar
Jaspers, R., Cardozo, N. J. L., Finken, K. H., Schokker, B. C., Mank, G., Fuchs, G. & Schüller, F. C. 1994 Islands of runaway electrons in the textor tokamak and relation to transport in a stochastic field. Phys. Rev. Lett. 72 (26), 40934096.Google Scholar
Kawashima, H., Yamamoto, T., Hoshino, K., Uesugi, Y., Mori, M. & Suzuki, N. 1991 Second harmonic electron cyclotron heating of lower hybrid current driven plasma in JFT-2M. Nucl. Fusion 31 (3), 495509.CrossRefGoogle Scholar
Liu, C. S., Muschietti, L., Appert, K., Vaclavik, J. & Boyd, D. A.1980 Enhanced runaway production rate by waves in plasmas. Tech. Rep.Google Scholar
Maehara, T., Yoshimura, S., Minami, T., Hanada, K., Nakamura, M., Maekawa, T. & Terumichi, Y. 1998 Electron cyclotron current drive in a lower hybrid current drive plasma. Nucl. Fusion 38 (1), 3957.Google Scholar
Martin-Solis, J. R., Sánchez, R. & Esposito, B. 2000 Predictions on runaway current and energy during disruptions in tokamak plasmas. Phys. Plasmas 7 (8), 33693377.Google Scholar
Zhang, Y. P., Liu, Yi., Song, X. Y., Yuan, G. L., Chen, W., Ji, X. Q., Ding, X. T., Yang, J. W., Zhou, J., Li, X. et al. 2010 Measurements of the fast electron bremsstrahlung emission during electron cyclotron resonance heating in the HL-2A tokamak. Rev. Sci. Instrum. 81 (10), 103501.Google Scholar
Zhang, Y. P., Yang, J. W., Liu, Yi, Song, X. Y., Yuan, G. L., Li, X., Zhou, Y., Zhou, J., Yang, Q. W., Chen, L. Y. et al. 2009 Study of runaway electron behaviour during electron cyclotron resonance heating in the HL-2A tokamak. Chin. Phys. B 18 (12), 53855394.Google Scholar