Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:48:12.825Z Has data issue: false hasContentIssue false

Characterization and application of hard x-ray betatron radiation generated by relativistic electrons from a laser-wakefield accelerator

Published online by Cambridge University Press:  10 April 2015

Michael Schnell*
Affiliation:
Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien Platz 1, 07743 Jena, Germany
Alexander Sävert
Affiliation:
Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien Platz 1, 07743 Jena, Germany
Ingo Uschmann
Affiliation:
Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien Platz 1, 07743 Jena, Germany Helmholtz Institute Jena, Friedrich Schiller University, Fröbelstieg 3, 07743 Jena, Germany
Oliver Jansen
Affiliation:
Institute for Laser- and Plasmaphysics, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
Malte Christoph Kaluza
Affiliation:
Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien Platz 1, 07743 Jena, Germany Helmholtz Institute Jena, Friedrich Schiller University, Fröbelstieg 3, 07743 Jena, Germany
Christian Spielmann
Affiliation:
Institute of Optics and Quantum Electronics, Abbe Center of Photonics, Friedrich Schiller University, Max-Wien Platz 1, 07743 Jena, Germany Helmholtz Institute Jena, Friedrich Schiller University, Fröbelstieg 3, 07743 Jena, Germany
*
Email address for correspondence: Michael.Schnell.1@uni-jena.de

Abstract

The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article, we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way, the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of the electron dynamics within the plasma wave. Parallel to the experimental work, 3D particle-in-cell simulations were performed, proved to be in good agreement with the experimental results.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, F. et al. 2008a Betatron oscillations of electrons accelerated in laser wakefields characterized by spectral x-ray analysis. Phys. Rev. E 77, 056402.Google Scholar
Albert, F. et al. 2008b Full characterization of a laser-produced keV x-ray betatron source. Plasma Phys. Control. Fusion 50, 124008.Google Scholar
Albert, F. et al. 2013 Angular dependence of betatron x-ray spectra from a laser-wakefield accelerator. Phys. Rev. Lett. 111, 235004.Google Scholar
Authier, A. 2001 Dynamical Theory of X-Ray Diffraction, 3rd edn. Oxford: Oxford University Press.Google Scholar
Banerjee, S. et al. 2013 Stable, tunable, quasimonoenergetic electron beams produced in a laser wakefield near the threshold for self-injection. Phys. Rev. Spec. Top. – Accel. Beams 16, 031302.Google Scholar
Ben-Ismaïl, A. et al. 2011 Compact and high-quality gamma-ray source applied to 10 μm-range resolution radiography. Appl. Phys. Lett. 98, 264101.Google Scholar
Buck, A. et al. 2011 Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543548.Google Scholar
Buck, A. et al. 2013 Shock-front injector for high-quality laser-plasma acceleration. Phys. Rev. Lett. 110, 185006.Google Scholar
Corde, S. et al. 2011 Controlled betatron x-ray radiation from tunable optically injected electrons. Phys. Rev. Lett. 107, 255003.Google Scholar
Corde, S. et al. 2012 Betatron emission as a diagnostic for injection and acceleration mechanisms in laser plasma accelerators. Plasma Phys. Control. Fusion 54, 124023.Google Scholar
Corde, S. et al. 2013 Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 148, doi:10.1103/RevModPhys.85.1.Google Scholar
Esarey, E., Schroeder, C. and Leemans, W. 2009 Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 12291285.Google Scholar
Esarey, E., Shadwick, B., Catravas, P. and Leemans, W. 2002 Synchrotron radiation from electron beams in plasma-focusing channels. Phys. Rev. E 65, 056505, http://journals.aps.org/pre/abstract/10.1103/PhysRevE.65.056505.Google Scholar
Faure, J. et al. 2004 A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541544.Google Scholar
Faure, J. et al. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.Google Scholar
Fourmaux, S. et al. 2011 Demonstration of the synchrotron-type spectrum of laser-produced Betatron radiation. New J. Phys. 13, 033017.Google Scholar
Fourment, C. et al. 2009 Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources. Rev. Sci. Instrum. 80, 083505.Google Scholar
Geddes, C. G. et al. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538541.Google Scholar
Geddes, C. G. R. et al. 2008 Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004.Google Scholar
Glinec, Y. et al. 2005 High-resolution γ-ray radiography produced by a laser-plasma driven electron source. Phys. Rev. Lett. 94.Google Scholar
Glinec, Y. et al. 2008 Direct observation of betatron oscillations in a laser-plasma electron accelerator. Europhys. Lett. 81, 64001, http://iopscience.iop.org/0295-5075/81/6/64001.Google Scholar
Gordienko, S. and Pukhov, A. 2005 Scalings for ultrarelativistic laser plasmas and quasimonoenergetic electrons. Phys. Plasmas 12, 043109.Google Scholar
Hogan, M. J. et al. 2010 Plasma wakefield acceleration experiments at FACET. New J. Phys. 12, 055030.Google Scholar
Huntington, C. M. et al. 2011 Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 105001.Google Scholar
Jackson, J. D. 1999 Classical Electrodynamic, 3 edn. New York: Wiley. ISBN: 0-471-30932-X, 978-0-471-30932-1, http://www.ub.tu-dortmund.de/katalog/titel/1258781.Google Scholar
Kaluza, M. C. et al. 2010 Measurement of magnetic-field structures in a laser-wakefield accelerator. Phys. Rev. Lett. 105, 115002.Google Scholar
Kirkpatrick, P. 1939 On the theory and use of ross filters. Rev. Sci. Instrum. 10, 186, http://dx.doi.org/10.1063/1.1751523.Google Scholar
Kirkpatrick, P. 1944 Theory and use of ross filters. II Rev. Sci. Instrum. 15, 223, http://dx.doi.org/10.1063/1.1770273.Google Scholar
Kiselev, S., Pukhov, A. and Kostyukov, I. 2004 X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 93, 135004, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.135004.Google Scholar
Kneip, S. et al. 2011 Bright spatially coherent synchrotron x-rays from a table-top source. Nat. Phys. 7, 737.Google Scholar
Kostyukov, I., Kiselev, S. and Pukhov, A. 2003 X-ray generation in an ion channel. Phys. Plasmas 10, 4818.Google Scholar
Kostyukov, I., Pukhov, A. and Kiselev, S. 2004 Phenomenological theory of laser-plasma interaction in ‘bubble’ regime. Phys. Plasmas 11, 5256.Google Scholar
Krushelnick, K. et al. 2005 Laser plasma acceleration of electrons: towards the production of monoenergetic beams. Phys. Plasmas 12, 056711.Google Scholar
Landgraf, B., Schnell, M., Saevert, A., Kaluza, M. C. and Spielmann, C. 2011 High resolution 3D gas-jet characterization. Rev. Sci. Instrum. 82, 083106.Google Scholar
Layer, B. D. et al. 2007 Ultrahigh-intensity optical slow-wave structure. Phys. Rev. Lett. 99, 035001, http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.035001.Google Scholar
Leemans, W. P. et al. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.Google Scholar
Maddox, B. R., Park, H. S., Remington, B. A. and McKernan, M. 2008 Calibration and characterization of single photon counting cameras for short-pulse laser experiments. Rev. Sci. Instrum. 79, 10E924.Google Scholar
Malka, V. 2002 Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961600.Google Scholar
Malka, V. et al. 2008 Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447453.Google Scholar
Mangles, S. P. et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535538.Google Scholar
Mangles, S. P. D. et al. 2009 Controlling the spectrum of x-rays generated in a laser-plasma accelerator by tailoring the laser wavefront. Appl. Phys. Lett. 95, 181106, doi:10.1063/1.3258022.Google Scholar
Osvay, K. 2004 Angular dispersion and temporal change of femtosecond pulses from misaligned pulse compressors. IEEE J. Sel. Top. Quantum Electron. 10, 213220.Google Scholar
Phuoc, K. T. et al. 2005 Laser based synchrotron radiation. Phys. Plasmas 12, 18.Google Scholar
Popp, A. et al. 2010 All-optical steering of laser-wakefield-accelerated electron beams. Phys. Rev. Lett. 105, 215001.Google Scholar
Powers, N. D. et al. 2014 Quasi-monoenergetic and tunable x-rays from a laser-driven compton light source. Nat. Photon. 8, 2831.Google Scholar
Pretzler, G., Kasper, A. and Witte, K. J. 2000 Angular chirp and tilted light pulses in CPA lasers. Appl. Phys. B 70, 19.Google Scholar
Pukhov, A. 1999 Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61, 425433.Google Scholar
Pukhov, A. and Gordienko, S. 2006 Bubble regime of wake field acceleration: similarity theory and optimal scalings. Phil. Trans. R. Soc. A 364, 623633, doi:10.1098/rsta.2005.1727.Google Scholar
Pukhov, A., Gordienko, S., Kiselev, S. and Kostyukov, I. 2004 The bubble regime of laser–plasma acceleration: monoenergetic electrons and the scalability. Plasma Phys. Control. Fusion 46, B179.Google Scholar
Pukhov, A. and Meyer-ter-Vehn, J. 2002 Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B: Lasers Opt. 74, 355361.Google Scholar
Rousse, A., Rischel, C. and Gauthier, J.-C. 2001 Femtosecond x-ray crystallography. Rev. Mod. Phys. 73, 1731.Google Scholar
Rousse, A. et al. 2004 Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 135005.Google Scholar
Schnell, M. et al. 2012a Deducing the electron-beam diameter in a laser-plasma accelerator using x-ray betatron radiation. Phys. Rev. Lett. 108, 075001.Google Scholar
Schnell, M. et al. 2012b Betatron radiation based measurement of the electron-beam size in a wakefield accelerator. AIP Conf. Proc. 1462, 231234.Google Scholar
Schnell, M. et al. 2013 Optical control of hard x-ray polarization by electron injection in a laser wakefield accelerator. Nat. Commun. 4, 2421.Google Scholar
Schnell, M. et al. 2014 Characterizing laser plasma electron accelerators with betatron radiation. In: High Intensity Lasers and High Field Phenomena (HILAS) Conf. Proc. March 18–20, Messe Berlin, Berlin Germany, Optical Society of America p. HTh2B.1, ISBN: 978-1-55752-995-4, Particle Scattering and Betatron Raidation (HTh2B).Google Scholar
Schwab, M. B. et al. 2013 Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions. Appl. Phys. Lett. 103, 191118, http://dx.doi.org/10.1063/1.4829489.Google Scholar
Seryi, A. 2010 Future prospects of accelerator science for particle physics. Nucl. Instrum. Methods Phys. Res. A 623, 2328.Google Scholar
Settler, G. S. 2001 Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Berlin, Heidelberg: Springer Berlin Heidelberg, ISBN 978-3-642-56640-0, http://www.springerlink.com/content/978-3-642-56640-0.Google Scholar
Strickland, D. and Mourou, G. 1985 Compression of amplified chirped optical pulses. Opt. Commun. 56, 219221.Google Scholar
Ta Phuoc, K. et al. 2008 Betatron radiation from density tailored plasmas. Phys. Plasmas 15, 063102.Google Scholar
Uhlig, J. et al. 2013 Table-top ultrafast x-ray microcalorimeter spectrometry for molecular structure. Phys. Rev. Lett. 110, 138302.Google Scholar