Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T18:07:41.450Z Has data issue: false hasContentIssue false

A computer simulation of the plasma resonance probe

Published online by Cambridge University Press:  13 March 2009

M. A. Hellberg
Affiliation:
Department of Physics, Univesity of Natal, Durban, South Africa

Abstract

A numerical experiment is described in which a one-dimensional plasma model is used to simulate the resonance probe. The trajectories of a large number of plane electron sheets are followed in a self-consistent calculation which takes account of a spatially dependent but smeared-out ion background, and externally applied static and r.f. potentials. No differentiation between sheath and plasma regions is introduced, nor is there any linearization.

The typical resonant rectification curves, with resonance below ωp, are obtained. A comparison is made between the plasma behaviour at resonance and in frequency ranges above and below the resonance. For example, the phase of current collection w.r.t. probe potential is studied. Fourier analysis of potential and density variations is used to obtain further information on phase relationships. Orbit diagrams of electrons forming the current under resonant conditions are presented, and a model for the mechanism of resonant rectification in terms of electrons at the sheath edge put forward.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bernstein, I. B. & Rabinowitz, I. N. 1959 Phys. Fluids 2, 112.CrossRefGoogle Scholar
Birdsall, C. K. & Bridges, W. B. 1961 J. Appl. Phys. 32, 2611.CrossRefGoogle Scholar
Bohm, D. 1949 Minimum ionic kinetic energy for a stable sheath. In The Characteristics of Electrical Discharges in Magnetic Fields. Ed. by Guthrie, and Wakening, . New York: McGraw-Hill.Google Scholar
Buckley, R. 1966 Proc. Roy. Soc. A 290, 186.Google Scholar
Buckley, R. 1967 J. Plasma Phys. 1, 171.CrossRefGoogle Scholar
Buneman, O. 1959 Phys. Rev. 115, 503.CrossRefGoogle Scholar
Burger, P. 1963 Tech. Report 0833–1. Stanford University.Google Scholar
Cairns, R. B. 1963 Proc. Phys. Soc. 82, 243.CrossRefGoogle Scholar
Crawford, F. W., Harp, R. S. & Mantei, T. D. 1967 Report SU—IPR 177. Stanford University.Google Scholar
Davies, P. G. 1966 Proc. Phys. Soc. 88, 1019.CrossRefGoogle Scholar
Dawson, J. 1960 Report MATT-31. Princeton University.Google Scholar
Dawson, J. 1961 Conf. on Plasma Physics and Controlled Nuclear Fusion Research. Salzburg. Also (1962), Nucl. Pus. Suppl., 1033.Google Scholar
Dawson, J. 1962 Phys. Fluids 5, 445.CrossRefGoogle Scholar
Dote, T. & Ichimya, T. 1964 Proc. Inst. Elect. Eng. 52, 1240.CrossRefGoogle Scholar
Dote, T. & Ichimiya, T. 1967 J. Phys. Soc. Japan 22, 1266.CrossRefGoogle Scholar
Dunn, D. A. & Ho, I. T. 1963 Tech. Report 0309–2. Stanford University.Google Scholar
Eldridge, O. C. & Feix, M. 1962 Phys. Fluids 5, 1076.CrossRefGoogle Scholar
Eldridge, O. C. & Feix, M. 1963 Phys. Fluids 6, 398.CrossRefGoogle Scholar
Fejer, J. A. 1964 J. Res. Nat. Bur. Stand. 68D, 1171.Google Scholar
Goertzel, G. 1960 Fourier analysis. In Mathematical Methods for Digital Computers. Ed. by Ralston, & Wilf, . John Wiley and Sons.Google Scholar
Harp, R. S. 1963 Report ML 1117. Stanford University.Google Scholar
Harp, R. S. & Crawford, F. W. 1964 J. Appl. Phys. 35, 3436.CrossRefGoogle Scholar
Harp, R. S., Kino, G S. & Pavkovich, J. M. 1963 Phys. Rev. Lett. 11, 310.CrossRefGoogle Scholar
Hellberg, M. A. 1965 Report CLM-M49. Culham Laboratory.Google Scholar
Ichikawa, Y. H. & Ikegami, H. 1962 Prog. Theor. Phys. 28, 315.CrossRefGoogle Scholar
Kato, K., Ogawa, K., Kiyama, S. & Shimahara, H. 1966 J. Phys. Soc. Japan 21, 2036.CrossRefGoogle Scholar
Lepechinsky, D., Messiaen, A. & Rolland, P. 1966 Plasma Physics. (J. Nuci. En. Pt. C) 8, 165.Google Scholar
Levitskii, S. M. & Shashurin, I. P. 1962 Soy. Phys.—Techn. Phys. 8, 319.Google Scholar
Mayer, H. M. 1963 Proc. VIth Int. Conf. on Ionization Phenomena in Gases, Paris 4, 129.Google Scholar
Messiaen, A. 1964 Compte Rend. 259, 1710.Google Scholar
Pavkovich, J. M. 1963 Report ML 1093. Stanford University.Google Scholar
Pavkovich, J. M. & Kino, G. S. 1963 Proc. VIth Int. Conf. on Ionization Phenomena in Gases, Paris 3, 39.Google Scholar
Peter, G. 1967 Phys. Lett. 25 A, 171.CrossRefGoogle Scholar
Peter, G., Müller, G. & Rabben, H. H. 1963 Proc. VIth Int. Conf. on Ionization Phenomena in Gases, Paris 4, 147.Google Scholar
Rostoker, N. 1961 Nucl. Fus. 1, 101.CrossRefGoogle Scholar
Smith, C. & Dawson, J. 1963 Tech. Report MATT–151. Princeton University.Google Scholar
Takayama, K., Ikegami, H. & Miyazaki, S. 1960 Phys. Rev. Lett. 5, 238.CrossRefGoogle Scholar
Uramoto, J., Ikegami, H. & Takayama, K. 1963 a Report IPPJ–15. Nagoya University.Google Scholar
Uramoto, J., Fujita, J., Ikegami, H. & Takayama, K. 1963 b Report IPPJ-19. Nagoya University.Google Scholar
Von Gierke, G., Müller, G., Peter, G. & Rabben, H. H. 1964 Z. Naturf. 19 a, 1107.CrossRefGoogle Scholar
Wimmel, H. K. 1964 Z. Naturf. 19 a, 1099.CrossRefGoogle Scholar