Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T04:50:08.935Z Has data issue: false hasContentIssue false

Coupled azimuthal modes propagating in current-carrying plasma waveguides

Published online by Cambridge University Press:  03 November 2011

V. GIRKA
Affiliation:
Kharkiv National University, Svobody sq., 4 Kharkiv 61077, Ukraine (v.girka@gmail.com)
I. GIRKA
Affiliation:
Kharkiv National University, Svobody sq., 4 Kharkiv 61077, Ukraine (v.girka@gmail.com)
I. PAVLENKO
Affiliation:
Kharkiv National University, Svobody sq., 4 Kharkiv 61077, Ukraine (v.girka@gmail.com)
O. GIRKA
Affiliation:
Kharkiv National University, Svobody sq., 4 Kharkiv 61077, Ukraine (v.girka@gmail.com)
A. GIRKA
Affiliation:
Kharkiv National University, Svobody sq., 4 Kharkiv 61077, Ukraine (v.girka@gmail.com)

Abstract

The paper is devoted to the theory of electromagnetic surface waves propagating along the azimuthal direction in cylindrical metal waveguides, which are filled with current-carrying plasmas. The problem is solved by the method of successive approximation. Adequacy of this method application is proved here. To study the coupling of ordinary (O-) and extraordinary (X-) azimuthal modes, the linear theory of the eigenazimuthal X- and O-modes is applied as zero approximation. Plasma particles are described in the framework of magneto-hydrodynamics, electromagnetic fields of the coupled azimuthal modes are determined from Maxwell equations. Spatial distribution of electromagnetic field of these coupled modes and their damping caused for different reasons are studied. Possibility to observe experimentally the phenomena, which accompany propagation of these coupled modes, is estimated numerically. Branches of their possible utilization are discussed as well.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Vucovic, S. (ed.) 1986 Surface Waves in Plasma and Solids. Hackensack, NJ: World Scientific.Google Scholar
[2]Kudrin, A. V., Petrov, E.Yu., , Kyriacou, G. A. and Zaboronkova, T. M. 2005 Prog. Electromagn. Res. 53, 135.CrossRefGoogle Scholar
[3]Gradov, O. M. and Stenflo, L. 1983 Phys. Rep. (Rev. Sect. Phys. Lett.) 94, 111.Google Scholar
[4]Hirota, R. 1964 J. Phys. Soc. Jpn. 19, 1130.CrossRefGoogle Scholar
[5]Azarenkov, N. A. and Ostrikov, K. N. 1999 Phys. Rep. 308, 333.CrossRefGoogle Scholar
[6]Girka, V. 2006 Plasma Phys. Rep. 32, 401.CrossRefGoogle Scholar
[7]Aliev, Yu. M., Schluter, H. and Shivarova, A. 2000 Guided-Wave-Produced Plasmas. New York: Springer.CrossRefGoogle Scholar
[8]Gradov, O. M. and Stenflo, L. 2001 J. Plasma Phys. 65, 73.CrossRefGoogle Scholar
[9]Shukla, P. K. and Stenflo, L. 2008 J. Plasma Phys. 74, 719.CrossRefGoogle Scholar
[10]Rama, A. K. and Schultz, S. D. 2000 Phys. Plasmas 7, 4084.CrossRefGoogle Scholar
[11]Jaeger, E. F., Berry, L. A., Myra, J. R., Batchelor, D. B., D'Azevedo, E., Bonoli, P. T., Phillips, C. K., Smithe, D. N., D'Ippolito, D. A., Carter, M. D. et al. ., 2003 Phys. Rev. Let. 90, 195001.CrossRefGoogle Scholar
[12]Wukitch, S. J., Lin, Y, Parisot, A., Wright, J. C., Bonoli, P. T., Porkolab, M., Basse, N., Edlund, E., Hubbard, A., Lin, L. et al. ., 2005 Phys. Plasmas 12, 056104.CrossRefGoogle Scholar
[13]Shukla, P. K. and Stenflo, L. 2007 J. Plasma Phys. 73, 3.CrossRefGoogle Scholar
[14]Girka, V., Girka, I., Kondratenko, A. and Tkachenko, V. 1988 Sov. J. Commun. Technol. Electron. 33, 37.Google Scholar
[15]Abramowitz, M. and Stegun, I. A. (eds.) 1964 Handbook of Mathematical Functions (Applied Mathematics, series 55). Gaithersburg, MD: National Bureau of Standards.Google Scholar
[16]Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. New York: MacGraw-Hill.CrossRefGoogle Scholar
[17]Girka, V., Girka, I., Kondratenko, A. and Tkachenko, V. 1989 Sov. J. Commun. Technol. Electron. 34, 96.Google Scholar
[18]Girka, V., Girka, I., Kondratenko, A. and Tkachenko, V. 1989 Sov. J. Commun. Technol. Electron. 34, 1527.Google Scholar
[19]Girka, I. and Kovtun, P. 1988 Tech. Phys. 68, 25.Google Scholar
[20]Girka, O. I., Girka, I. O., Girka, V. O. and Pavlenko, I. V. 2008 Radiophys. Quantum Electron. 51, 110.CrossRefGoogle Scholar
[21]Shkaropsky, I. P., Johnston, T. W. and Bachynski, M. P. 1966 The Particle Kinetics of Plasmas. London: Addison-Wesley.Google Scholar
[22]Girka, O. I., Girka, I. O., Girka, V. O. and Pavlenko, I. V. 2008 Tech. Phys. 53, 905.CrossRefGoogle Scholar
[23]Girka, V. O. and Girka, I. O. 2002 Plasma Phys Rep. 28, 190.CrossRefGoogle Scholar
[24]Lifshits, Ye. M. and Pitaevsky, L. P. 1981 Course of Theoretical Physics. Physical Kinetics, Vol. 10. Oxford, UK: Pergamon.Google Scholar
[25]Landau, L. D. and Lifshits, Ye. M. 1960 Course of Theoretical Physics. Electrodynamics of Continuous Media, Vol. 8. Oxford, UK: Pergamon.Google Scholar
[26]Girka, O. I., Girka, I. O., Girka, V. O. and Pavlenko, I. V. 2008 Plasma Phys. Rep. 34, 901.CrossRefGoogle Scholar
[27]Karimov, A. R., Stenflo, L. and Yu, M. Y. 2009 Phys. Plasmas 16, 052313.Google Scholar
[28]Zhang, W., Yu, M. Y., Karimov, A. R. and Stenflo, L. 2010 J. Plasma Phys. 76, 329.CrossRefGoogle Scholar