Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T10:54:25.471Z Has data issue: false hasContentIssue false

Covariant ponderomotive Hamiltonian

Published online by Cambridge University Press:  13 March 2009

A. Achterberg
Affiliation:
Sterrewacht ‘Sonnenborgh’, Zonnenburg 2, 3512 NL Utrecht, The Netherlands

Abstract

A covariant formulation for the ponderomotive Hamiltonian is developed using Lie-transform perturbation theory. The case of unmagnetized as well as magnetized particles is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Achterberg, A., 1983 Phys. Rev. A 28, 2449.CrossRefGoogle Scholar
Cary, J. R. 1981 Phys. Rep. 79, 129.CrossRefGoogle Scholar
Cary, J. R. & Kaufman, A. N. 1977 Phys. Rev. Lett. 39, 402.CrossRefGoogle Scholar
Cary, J. R. & Kaufman, A. N. 1981 Phys. Fluids, 24, 1238.CrossRefGoogle Scholar
Deprit, A. 1969 Celes. Mech. 1, 12.CrossRefGoogle Scholar
Dewar, R. L. 1976 J. Phys. A 9, 2043.Google Scholar
Fradkin, D. M. 1978 J. Phys. A 11, 1069.Google Scholar
Goldstein, H. 1980 Classical Mechanics (2nd ed.). Addison-Wesley.Google Scholar
Jaques, S. A. 1978 Astrophys. J. 226, 632.CrossRefGoogle Scholar
Lichnerowicz, A. 1967 Relativistic Hydrodynamics and Magnetohydrodynamics. Benjamin.Google Scholar
Littlejohn, R. G. 1981 Phys. Fluids, 24, 1730.CrossRefGoogle Scholar
Littlejohn, R. G. 1983 J. Plasma Phys. 29, 111.CrossRefGoogle Scholar
Mannheimer, W. M. 1985 Phys. Fluids, 28, 1569.CrossRefGoogle Scholar
Melrose, D. B. 1973 Plasma Phys. 15, 99.CrossRefGoogle Scholar
Motz, H. & Watson, C. J. H. 1967 Advances in Electron and Electronic Physics, vol. 23, p. 168. Academic.Google Scholar
Sagdeev, A. A. & Galeev, R. S. 1969 Reviews of Plasma Physics (ed. Leontovich, M. A.), vol. 7, p. 1. Consultants Bureau. New York.Google Scholar
Shutz, B. 1980 Geometrical Methods of Mathematical Physics. Cambridge University Press.CrossRefGoogle Scholar