Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T03:33:11.034Z Has data issue: false hasContentIssue false

The Crab nebula energy origin and its high frequency radiation spectra

Published online by Cambridge University Press:  13 May 2016

George Z. Machabeli*
Affiliation:
Centre for Theoretical Astrophysics, ITP, Ilia State University, Tbilisi 0162, Georgia
A. Rogava
Affiliation:
Centre for Theoretical Astrophysics, ITP, Ilia State University, Tbilisi 0162, Georgia
N. Chkheidze
Affiliation:
Centre for Theoretical Astrophysics, ITP, Ilia State University, Tbilisi 0162, Georgia
Z. Osmanov
Affiliation:
School of Physics, Free University of Tbilisi, 0183 Tbilisi, Georgia
D. Shapakidze
Affiliation:
Centre for Theoretical Astrophysics, ITP, Ilia State University, Tbilisi 0162, Georgia
*
Email address for correspondence: g.machabeli@iliauni.edu.ge

Abstract

In the present work there is presented a model describing transfer of the Crab pulsar’s spin-down energy into the powerful synchrotron emission of the nebula. The process of the energy transfer consists of several consecutive stages. The physical processes underlying the theoretical model provide us with the synchrotron emission spectrum, which fits well with the observed one.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A.(Eds) 1965 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55. US GPO.Google Scholar
Aliu, E., Archambault, S., Aune, T. et al. 2014 A search for enhanced very high energy gamma-ray emission from the 2013 March Crab nebula flare. Astrophys. J. 781, L11L17.CrossRefGoogle Scholar
Arcimowich, L. A. & Sagdeev, R. Z.1979 Physics of plasmas for physicists (in Russian). Atomizdat.Google Scholar
Arons, J. 1981 Pulsar theory: particle acceleration and photon emission in the polar flux tube. In Proceedings of the Varenna Summer School and Workshop on Plasma Astrophysics (ed. Guenne, T. D. & Levy, G.), ESA SP-161, pp. 273277.Google Scholar
Bogovalov, S. 2001 Magnetocentrifugal acceleration of plasma in a nonaxisymmetric magnetosphere. Astron. Astrophys. 367, 159169.CrossRefGoogle Scholar
Cocke, W. J. 1975 On the production of power-law spectra and the evolution of cosmic synchrotron sources – a model for the Crab nebula. Astrophys. J. 202, 773781.Google Scholar
Degtyarev, L. M., Zakharov, V. E. & Rudakov, L. I. 1976 Two examples of Langmuir wave collapse. Phys. Plasmas 2, 438447; (in Russian).Google Scholar
Deutsch, A. J. 1955 The electromagnetic field of an idealized star in rigid rotation in vacuo. Rev. Mod. Phys. 38, 626633.Google Scholar
Dombrovsky, V. A. 1954 O prirode izluchenia Krabovidnoi tumannosti. Dokl. Akad. Nauk USSR 94, 10211032; (in Russian).Google Scholar
Erber, T. 1966 High-energy electromagnetic conversion processes in intense magnetic fields. Astron. Astrophys. 38, 626659.Google Scholar
de Felice, F. 1995 Dynamics on a rotating disk. Phys. Rev. A 52, 34523456.CrossRefGoogle Scholar
Galeev, A. A., Sagdeev, R. Z., Shapiro, V. D. & Shevchenko, V. I. 1977 Langmuir turbulence and dissipation of high-frequency energy. Zh. Eksp. Teor. Fiz. 73, 13521369.Google Scholar
Ginzburg, V. L. 1981 Teoreticheskaya fizika i astrofizika. Nauka.Google Scholar
Ginzburg, V. L. & Usov, V. V. 1972 Concerning the atmosphere of magnetic neutron stars (pulsars). J. Expl. Theor. Phys. 15, 280284.Google Scholar
Goldreich, P. & Julian, W. H. 1969 Pulsar electrodynamics. Astrophys. J. 157, 869880.CrossRefGoogle Scholar
Gould, R. 1965 High-energy photons from the Compton–synchrotron process in the Crab nebula. Phys. Rev. Lett. 15, 577579.Google Scholar
Heisenberg, W. 1948 Zur statistischen Theorie der Turbulenz. Physica 124, 628657.Google Scholar
de Jager, O., Harding, A. K., Michelson, P. F., Nel, H. I., Nolan, P. I., Seekumar, P. & Thompson, D. J. 1996 Gamma-ray observations of the Crab nebula: a study of the synchro-Compton spectrum. Astrophys. J. 457, 253263.CrossRefGoogle Scholar
Klepikov, N. P. 1954 Izluchenie fotonov v elektronno-pozitronnoi plazme. J. Expl. Theor. Phys. 26, 1934; (in Russian).Google Scholar
Kolmogorov, A. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301316.Google Scholar
Lominadze, D. G., Mikhailovskii, A. B. & Sagdeev, R. Z. 1979 Langmuir turbulence of a relativistic plasma in a strong magnetic field. J. Expl. Theor. Phys. 50, 927939.Google Scholar
Machabeli, G. Z., Mchedishvili, G. Z. & Shapakidze, D. E. 2000 Force-free rotator. Astrophys. Space Sci. 271, 277292.CrossRefGoogle Scholar
Machabeli, G. Z., Nanobashvili, I. S. & Rogava, A. D. 1996 Centrifugal acceleration surprises. Radiophys. Quant. Electron. 39, 2630.Google Scholar
Machabeli, G., Osmanov, Z. & Mahajan, S. 2005 Parametric mechanism of the rotation energy pumping by a relativistic plasma. Phys. Plasmas 12, 062906.Google Scholar
Machabeli, G. & Rogava, A. 1994 Centrifugal force: a gedanken experiment. Phys. Rev. A 50, 98103.Google Scholar
Machabeli, G., Rogava, A. & Shapakidze, D. 2015 On the origin and physics of gamma flares in Crab nebula. Astrophys. J. 814, 38M44M.Google Scholar
Machabeli, G. Z. & Usov, V. V. 1989 Cyclotron instability and the generation of radio emission in pulsar magnetospheres. Sov. Astron. Lett. 15, 393397.Google Scholar
Mahajan, S., Machabeli, G., Osmanov, Z. & Chkheidze, N. 2013 Ultra high energy electrons powered by pulsar rotation. Nat. Sci. Rep. 3, 12621268.Google Scholar
Manchester, R. & Taylor, J. 1977 Pulsars. Freeman.Google Scholar
McVittie, G. C. 1956 General Relativity and Cosmology. Chapman and Hall.Google Scholar
Michel, F. C. 1969 Relativistic stellar-wind torques. Astrophys. J. 158, 727738.CrossRefGoogle Scholar
Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.Google Scholar
Miller, J. C. & Abramowicz, M. A. 1994 Comment on ‘Centrifugal force: a gedanken experiment’. SISSA ref. 178/94/A 14.Google Scholar
Oort, J. H. & Warvalen, T. 1956 Polarization and composition of the Crab nebula. Bull. Astron. Inst. Neth. 12, 285294.Google Scholar
Osmanov, Z. 2011 The influence of corotation on high-energy synchrotron emission in Crab-like pulsars. Mon. Not. R. Astron. Soc. 411, 973977.Google Scholar
Osmanov, Z., Dalakishvili, G. & Machabeli, G. 2008 On the reconstruction of a magnetosphere of pulsars nearby the light cylinder surface. Mon. Not. R. Astron. Soc. 383, 10071014.Google Scholar
Osmanov, Z., Mahajan, S., Machabeli, S. & Chkheidze, N. 2014 Extremely efficient Zevatron in rotating AGN magnetospheres. Mon. Not. R. Astron. Soc. 445, 4155.CrossRefGoogle Scholar
Osmanov, Z., Mahajan, S., Machabeli, S. & Chkheidze, N. 2015 Millisecond newly born pulsars as efficient accelerators of electrons. Nat. Sci. Rep. 5, 1444314454.Google Scholar
Osmanov, Z., Shapakidze, D. & Machabeli, G. 2009 Dynamical feedback of the curvature drift instability on its saturation process. Astron. Astrophys. 503, 1924.Google Scholar
Pelletier, G. 1982 Generation of a high-energy electron tail by strong Langmuir turbulence in a plasma. Phys. Rev. Lett. 49, 782785.Google Scholar
Rogava, A. D., Dalakishvili, G. & Osmanov, Z. N. 2003 Centrifugally driven relativistic dynamics on curved trajectories. Gen. Relativity Gravitation 35, 11331152.CrossRefGoogle Scholar
Ruderman, M. A. & Sutherland, P. G. 1975 Theory of pulsars – polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 5172.CrossRefGoogle Scholar
Shklovsky, I. S. 1953 O svechenii Krabovidnoi tumannosti. Dokl. Akad. Nauk 90, 983994; (in Russian).Google Scholar
Sturrock, P. A. 1971 A model of pulsars. Astrophys. J. 164, 529556.CrossRefGoogle Scholar
Tademaru, E. 1973 On the energy spectrum of relativistic electrons in the Crab nebula. Astrophys. J. 183, 625635.CrossRefGoogle Scholar
Thorne, K., Price, R. & MacDonald, D. A. 1986 Black Holes: the Membrane Paradigm. Yale University Press.Google Scholar
Vashakidze, M. A. 1954 O stepeni polarizacii blizkix vnegalakticheskix tumannostei I Krabovidnoi tumannosti. Astr. Circ. 149, 1114; (in Russian).Google Scholar
Vedenov, A. A. & Rudakov, L. I. 1964 Interaction of waves in continuous media. Dokl. Akad. Nauk SSSR 159, 767775.Google Scholar
Weekes, T., Cawley, M. F., Fegan, D. J. et al. 1989 Observation of TeV gamma rays from the Crab nebula using the atmospheric Cerenkov imaging technique. Astrophys. J. 342, 379395.CrossRefGoogle Scholar
Zakharov, V. E. 1972 Collapse of Langmuir wave. Zh. Eksp. Teor. Fiz. 35, 908919.Google Scholar