Published online by Cambridge University Press: 13 March 2009
Electromagnetic cyclotron instabilities of a relativistic electron beam propagating in an external magnetic field are studied by considering electron motion inside a self-consistent electromagnetic field. When the number of electrons in a subgroup is greater than two, or when the phases are random, the linear dispersion relation obtained agrees with that of Chu et al. for a gyrotron in a ring model. When the number of electrons in a subgroup is limited to two only, the linear dispersion relation is different in that it has an instability threshold. Completely nonlinear motion is also studied using the method of Poincaré's return map, or by considering the departure rate of nearby trajectories. Stochasticity is observed in the nonlinear oscillation of the wave-particle system when a critical energy is exceeded. Physical implications for gyrotron operation are also discussed.