Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:29:47.239Z Has data issue: false hasContentIssue false

Deflagrations and discontinuities in laser-produced plasmas

Published online by Cambridge University Press:  13 March 2009

G. J. Pert
Affiliation:
Department of Applied Physics, University of Hull, Hull, HU6 7RX

Abstract

The structure of deflagrations in one-dimensional flow is examined in detail. It is shown that the rule that deflagrations be weak or Chapman-Jouget must be obeyed unless a non-hydrodynamic discontinuity occurs. Such flows are shown to be unique and stable, once the downstream expansion is specified. It is shown that non-hydrodynamic discontinuities, if strong, are accompanied by a compression leading to a weak termination. The application to plasmas produced by laser irradiation of a solid is investigated and the flow structure in the presence of flux limitation evaluated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Axford, W. I. 1961 Phil. Trans. A253, 30.Google Scholar
Bobin, J. L. 1971 Phys. Fluids, 14, 234.CrossRefGoogle Scholar
Bobin, J. L. 1981 J. Plasma Phys. 25, 193.CrossRefGoogle Scholar
Bobin, J. L., Woo, W. & Degroot, J. S. 1977 J. de Phys. 38, 769.CrossRefGoogle Scholar
Courant, R. & Friedrichs, K. O. 1948 Supersonic Flow and Shock Waves. Wiley. Interscience.Google Scholar
Cowie, L. L. & Mckee, C. F. 1977 Astro. Phys. J. 211, 135.CrossRefGoogle Scholar
Fauquignon, C. & Floux, F. 1970 Phys. Fluids, 13, 386.CrossRefGoogle Scholar
Fraser, A. R. 1960 Proc. Roy. Soc. A245, 536.Google Scholar
Gitomer, S. J., Morse, R. L. & Newberger, B. S. 1977 Phys. Fluids, 20, 234.CrossRefGoogle Scholar
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics. Pergamon.Google Scholar
Lee, K., Forslund, D. W., Kindel, J. M. & Lindman, E. L. 1977 Phys. Fluids, 20, 51.CrossRefGoogle Scholar
Mayer, F. J., Berger, R. L. & Max, C. E. 1980 Phys. Fluids, 23, 1244.CrossRefGoogle Scholar
Max, C. E. & Mckee, C. F. 1977 Phys. Rev. Lett. 39, 1336.CrossRefGoogle Scholar
Max, C. E., Mckee, C. F. & Mead, W. C. 1980 Phys. Fluids, 23, 1620.CrossRefGoogle Scholar
Mulser, P. & Van Kessel, C. 1977 Phys. Rev. Lett. 38, 902.CrossRefGoogle Scholar
Mulser, P. & Van Kessel, C. 1978 J. Phys. D, 11, 1085.CrossRefGoogle Scholar
Pert, G. J. 1974 Plasma Phys. 16, 1019.CrossRefGoogle Scholar
Pert, G. J. 1977 J. Phys. A, 10, 583.CrossRefGoogle Scholar
Virmont, J., Pellat, R. & Mora, A. 1978 Phys. Fluids, 21, 567.CrossRefGoogle Scholar
Zel'Dovich, Ya. B. & Raizer, Yu. P. 1966 Physics of Shock Waves and High Temperature Hydrodynamic Phenomena. Academic.Google Scholar