Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T05:42:58.726Z Has data issue: false hasContentIssue false

Diagnostics of inhomogeneous plasmas: correction coefficients of the self-absorption and of the effect of spatial inhomogeneity

Published online by Cambridge University Press:  06 April 2016

Hssaïne Amamou*
Affiliation:
Laboratoire PROTEE – ISO Université du Sud Toulon-Var, BP 20132, 83957 La Garde CEDEX, France
Alexandre Escarguel
Affiliation:
Laboratoire de Physique des Interactions Ioniques et Moléculaire PIIM, Université d’Aix-Marseille Campus St Jérôme, Marseille, France
Belkacem Ferhat
Affiliation:
Laboratoire d’Electronique Quantique LEQ, Faculté de Physique, U.S.T.H.B, BP 32 El Alia, 16111, Alger, Algérie
*
Email address for correspondence: amamou@univ-tln.fr

Abstract

A plasma spatial distribution model for a cylindrical geometry was developed to study the dependence of the spectral lines in the plasma emission spectra on plasma inhomogeneity and on the self-absorption effect. In this work, we consider a particular spatial distribution of a plasma. This distribution has allowed us to establish new correction coefficients of spectral lines on the self-absorption effect and to consider the media inhomogeneity effect. These coefficients are then used to analyse experimental spectral lines of emission of a single laser breakdown in an underwater medium. A spatial and time resolved spectroscopic method was used to study the spectrum. For the electron temperature and electron density measurements, trace impurities of Ca and K are added to the water.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrarov, S. M. & Quine, B. M. 2011 Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation. Appl. Maths Comput. 218 (5), 18941902.CrossRefGoogle Scholar
Amamou, H., Bois, A., Ferhat, B., Redon, R., Rossetto, B. & Matheron, P. 2002 Correction of self-absorption for homogeneous and LTE plasma spectral line and in ratios of its transition probabilities. J. Quant. Spectrosc. Radiat. Transfer 75 (6), 747763.CrossRefGoogle Scholar
Amamou, H., Bois, A., Grimaldi, M. & Redon, R. 2008 Exact analytical formula for Voigt function which results from the convolution of a Gaussian profile and a Lorentzian profile. Phys. Chem. News 43, 16.Google Scholar
Amamou, H., Bois, A., Ferhat, B., Redon, R., Rossetto, B. & Ripert, M. 2003 Correction of the self-absorption for reversed spectral lines: application to two resonance lines of neutral aluminium. J. Quant. Spectrosc. Radiat. Transfer 77, 365372.CrossRefGoogle Scholar
Amstrong, B. H. 1967 Spectrum line profiles: the Voigt function. J. Quant. Spectrosc. Radiat. Transfer 7 (1), 6188.CrossRefGoogle Scholar
Biberman, L. M. 1947 On the diffusion theory of resonance radiation. Zh. Eksp. Teor. Fiz. 17, 416; [Eng. Transl.: Sov. Phys. – JETP 19, 584–603 (1949)].Google Scholar
Bradt, H.2009 Supplement to Ch. 6 of Astrophysics Processes: The Physics of Astronomical Phenomena 2008, Cambridge University Press.CrossRefGoogle Scholar
Chae, J. 2014 Spectral inversion of the $\text{H}{\it\alpha}$ line for a plasma feature in the upper chromosphere of the quiet sun. Astrophys. J. 780, 109120.CrossRefGoogle Scholar
Cowan, R. D. 1981 The Theory of Atomic Structure and Spectra. chap. 1.9, University of California Press.CrossRefGoogle Scholar
Ecker, G. & Kroll, W.1966 Free-bound model of the plasma in equilibrium, Z. Naturforsch. 21a 2012–2022; Degree of ionization of a plasma in equilibrium. Z. Naturforsch. 21, 2023–2027.Google Scholar
El Sherbini, A., El Sherbini, T. H., Hegazy, H., Cristoforetti, G., Legnaioli, S., Palleschi, V., Pardini, L., Salvetti, A. & Tognoni, E. 2005 Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochim. Acta B 60 (8), 15731579.CrossRefGoogle Scholar
Escarguel, A., Lesage, A., Ferhat, B. & Richou, J. 2000 A single laser spark in aqueous medium. J. Quant. Spectrosc. Radiat. Transfer 64, 353361.CrossRefGoogle Scholar
Gigosos, M. A., Gonzalez, M. A. & Cardenoso, V. 2003 Computer simulated Balmer-alpha, -beta and -gamma Stark line profiles for non-equilibrium plasmas diagnostics. Spectrochim. Acta B 58, 14891504.CrossRefGoogle Scholar
Griem, H. 1963 Validity of local thermal equilibrium in plasma spectroscopy. Phys. Rev. 131, 11701176.CrossRefGoogle Scholar
Griem, H. R. 1964 Plasma Spectroscopy. McGraw-Hill.Google Scholar
Griem, H. R. 1974 Spectral Line Broadening by Plasmas. Academic Press.Google Scholar
Griem, H. R. 1997 Principles of Plasma Spectroscopy. Cambridge University Press.CrossRefGoogle Scholar
Gudimenko, E., Milosavljevic, V. & Daniels, S. 2012 Influence of self-absorption on plasma diagnostics by emission spectral lines. Opt. Express 20 (12), 1269912709.CrossRefGoogle ScholarPubMed
Holstein, T. 1947 Imprisonment of resonance radiation in gases. Phys. Rev. 72 (12), 12121233.CrossRefGoogle Scholar
Holstein, T. 1951 Imprisonment of resonance radiation in gases. II. Phys. Rev. 83 (6), 11591168.CrossRefGoogle Scholar
Kastner, S. O. 1998 On expressions for line optical thickness. J. Quant. Spectrosc. Radiat. Transfer 60 (4), 515521.CrossRefGoogle Scholar
Konjevic, M. & Wiese, W. L. 1990 Experimental Stark widths and shifts for spectral lines of neutral and ionized atoms. J. Phys. Ref. Data 19, 13071385.CrossRefGoogle Scholar
Konjevic, N. & Roberts, J. R. 1976 A critical review of the stark widths and shifts of spectral lines from non-hydrogenic atoms. J. Phys. Chem. Ref. Data 5 (2), 209257.CrossRefGoogle Scholar
Lochte-Holgreven, T. 1968 Plasma Diagnostics. North-Holland.Google Scholar
McWhirter, R. W. P. 1965 Plasma Diagnostic Techniques (ed. Huddlestone, R. H. & Leonard, S. L.), Academic Press.Google Scholar
Mijatovic, Z., Kobilarov, R., Nikolic, D., Vujicic, B. & Konjevic, N. 1993 Simple method for deconvolution of a Gaussian and a plasma broadened spectral line profile jA, (Rx). J. Quant. Spectrosc. Radiat. Transfer 50, 329335.CrossRefGoogle Scholar
Milosavljevic, V. & Poparic, G. 2001 Atomic spectral line free parameter deconvolution procedure. Phys. Rev. E 63, 036404036411.CrossRefGoogle ScholarPubMed
Moon, H. Y., Herrera, K. K., Omenetto, N., Smith, B. W. & Winefordner, J. D. 2009 On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser induced breakdown spectroscopy. Spectrochim. Acta B 64, 702713.CrossRefGoogle Scholar
NIST National Institute of Standards and Technology, http://www.nist.gov/pml/data/asd.cfm. 1901.Google Scholar
Parigger, C. G. 2010 Diagnostic of a laser-induced optical breakdon based on half-width at half-area of $\text{H}{\it\alpha}$ , $\text{H}{\it\beta}$ , and $\text{H}{\it\gamma}$ lines. Intl Rev. At. Mol. Phys. 1 (2), 129136.Google Scholar
Parigger, C. G. & Oks, E. 2010 Laser-induced optical breakdown in methane: diagnostic using H-gamma line broadening. Intl Rev. At. Mol. Phys. 1, 2543.Google Scholar
Parigger, C. G., Surmick, D. M., Gautam, G. & El Sherbini, A. M. 2015 Hydrogen alpha laser ablation plasma diagnostics. Opt. Lett. 40 (11), 34363439.CrossRefGoogle ScholarPubMed
Sevastianenko, V. 1985 The influence of particles interaction in low-temperature plasma on its composition and optical properties. Beitr. Plasma Phys. 25, 151197.CrossRefGoogle Scholar
Swafford, L. D. & Parigger, C. G. 2013 Measurement of hydrogen balmer series lines following laser-inducedoptical breakdown in laboratory air. Intl Rev. At. Mol. Phys. 4 (1), 2328.Google Scholar
Unsold, A. 1955 Physik der Sternatmospharen, 2ième edn. Springer.CrossRefGoogle Scholar