Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-13T10:47:29.647Z Has data issue: false hasContentIssue false

Dispersion relation for azimuthal electromagnetic surface waves on a magnetized annular plasma in a metal waveguide with coaxial anisotropic dielectric inner coating

Published online by Cambridge University Press:  01 December 2007

S. DARYANOOSH
Affiliation:
Physics Department, Tarbiat Moallem University, Tehran, Iran (s_daryanoosh@tmu.ac.ir, mehdian@saba.tmu.ac.ir)
H. MEHDIAN
Affiliation:
Physics Department, Tarbiat Moallem University, Tehran, Iran (s_daryanoosh@tmu.ac.ir, mehdian@saba.tmu.ac.ir)

Abstract

The dispersion relation of azimuthal electromagnetic surface waves on a magnetized annular plasma surrounded by a metallic cylindrical coaxial anisotropic dielectric lined waveguide is obtained. The thickness of the dielectric and its location in the waveguide are studied with respect to their effects on the number of spectra observed. The graphs of frequency spectra against the ratio of radii of the annular plasma and η = ωpee are plotted. Finally, surface E-modes for coaxial anisotropic and isotropic dielectrics have been investigated.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Jazi, B., Shokri, B. and Arbab, H. 2006 Plasma. Phys. Control. Fusion 48, 11051123.CrossRefGoogle Scholar
[2]Lu, M. and Fejer, M. M. 1993 J. Opt. Soc. Am. 10, 246261.CrossRefGoogle Scholar
[3]Gamaly, E. G. 1993 Phys. Rev. E 48, 516522.Google Scholar
[4]Knoesen, A., Gaylord, T. K. and Moharam, M. G. 1988 IEEE J. Lightwave Technol. LT-6, 10831103.CrossRefGoogle Scholar
[5]Giarusso, D. P. and Haris, J. H. 1973 J. Opt. Soc. Am. 63, 138145.CrossRefGoogle Scholar
[6]Yamanouchi, K., Kamiya, T. and Shibayama, K. 1978 IEEE Trans. Microwave Theory MTT-26, 298305.CrossRefGoogle Scholar
[7]Wu, J. Q. 1984 Phys. Plasmas 4, 3064.Google Scholar
[8]Felch, K. L., Busby, K. O., Layman, R. W., Kapilow, D. and Wallsh, J. E. 1981 Appl. Phys. Lett. 38, 601603.CrossRefGoogle Scholar
[9]Mu, Sun, Zhu, P. and Yang, S. Z. 1996 J. Phys. D: Appl. Phys. 29, 274, 276.Google Scholar
[10]Liehr, M., Wieder, S., and Dieguez-Campo, M. 2006 Thin Solid Film 502, 914.CrossRefGoogle Scholar
[11]Azarenkov, N. A., Girka, V. O. and Pavlenko, I. V. 2000 Microwave gas discharge sustained by the azimuthal surface waves. Contrib. Plasma Phys. 40, 529536.3.0.CO;2-1>CrossRefGoogle Scholar
[12]Girka, V. O. and Puzyrkov, S. Yu. 2002 Nonlinear interaction of an annular electron beam with azimuthal surface waves. Plasma Phys. Rep. 28, 351358.CrossRefGoogle Scholar
[13]Ganachev, I. P. and Sugai, H. 2005 Surface Coat. Technol. 200, 792795.CrossRefGoogle Scholar
[14]Jazi, B. and Mehdian, H. 2004 Plasma Phys. Control. Fusion 46, 507518.CrossRefGoogle Scholar
[15]Krall, N. A. and Trivelpiece, A. W. 1973 Principle of Plasma Physics. New York: McGraw-Hill.CrossRefGoogle Scholar
[16]Alexandrov, A. F., Bogdankovich, L. S. and Rukhadze, A. A. 1984 Principles of Plasma Electrodynamics. Heidelberg: Springer.CrossRefGoogle Scholar
[17]Trivelpiece, A. W. and Gould, R. W. 1959 J. Appl. Phys. 31, 17841792.CrossRefGoogle Scholar
[18]Jackson, J. D. 1998 Classical Electrodynamics. New York: Wiley.Google Scholar
[19]Shokri, B. and Jazi, B. 2003 Phys. Lett. A 318, 415424.CrossRefGoogle Scholar