Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T14:01:45.584Z Has data issue: false hasContentIssue false

Dust grain surface potential in a non-Maxwellian dusty plasma with negative ions

Published online by Cambridge University Press:  08 January 2014

A. A. ABID
Affiliation:
Department of Applied Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000, Pakistan (abidaliabid1@hotmail.com) National Center for Physics, Shahdarah Valley Road, QAU Campus, Islamabad 44000, Pakistan
S. ALI
Affiliation:
National Center for Physics, Shahdarah Valley Road, QAU Campus, Islamabad 44000, Pakistan
R. MUHAMMAD
Affiliation:
Department of Applied Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000, Pakistan (abidaliabid1@hotmail.com)

Abstract

Dust charging processes involving the collection of electrons and positive/negative ions in a non-equilibrium dusty plasma are revisited by employing the power-law kappa (κ)-distribution function. In this context, the current balance equation is solved to obtain dust grain surface potential in the presence of negative ions. Numerically, it is found that plasma parameters, such as the κ spectral index, the negative ion-to-electron temperature ratio (γ), the negative–positive ion number density ratio (α), and the negative ion streaming speed (U0) significantly modify the dust grain potential profiles. In particular, for large kappa values, the dust grain surface potential reduces to the Maxwellian case, and at lower kappa values the magnitude of the negative dust surface potential increases. An increase in γ and U0 leads to the enhancement of the magnitude of the dust grain surface potential, while α leads to an opposite effect. The relevance of present results to low-temperature laboratory plasmas is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amemiya, H., Annaratone, B. M. and Allen, J. E. 1998 The double sheath associated with electron emission into a plasma containing negative ions. J. Plasma Phys. 60, 81.CrossRefGoogle Scholar
Amemiya, H., Annaratone, B. M. and Allen, J. E. 1999 The collection of positive ions by spherical and cylindrical probes in an electronegative plasma. Plasma Sources Sci. Technol. 8, 179.CrossRefGoogle Scholar
Baluku, T. K. and Hellberg, M. A. 2008 Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas 15, 123705.CrossRefGoogle Scholar
Barkan, A., D'Angelo, N. and Merlino, R. L. 1994 Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093.CrossRefGoogle ScholarPubMed
Barkan, A., D'Angelo, N. and Merlino, R. L. 1996 Experiments on ion-acoustic waves in dusty plasmas. Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and D'Angelo, N. 1995 Laboratory observation of the dust-acoustic wave mode. Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Choi, S. J. and Kushner, M. J. 1994 Mutual shielding of closely spaced dust particles in low pressure plasmas J. Appl. Phys. 75, 3351.CrossRefGoogle Scholar
Du, J. 2004 Non-extensivity in non-equilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262.CrossRefGoogle Scholar
Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas: current status, open issues, perspectives. Phys. Rep. 421, 1.CrossRefGoogle Scholar
Gong, J. Y. and Du, J. L. 2012 Dust charging processes in the non-equilibrium dusty plasma with non-extensive power-law distribution. Phys. Plasmas 19, 023704.CrossRefGoogle Scholar
Hellberg, M. A., Mace, R. L., Baluku, T. K., Kourakis, I. and Saini, N. S. 2009 Comment on mathematical and physical aspects of kappa velocity distribution. Phys. Plasmas 16, 094701.CrossRefGoogle Scholar
Mace, R. L. and Hellberg, M. A. 1995 A dispersion function for plasmas containing superthermal particles. Phys. Plasmas 2, 2098.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2003 Charging of dust grains in a plasma with negative ions. Phys. Plasmas 10, 1518.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Laboratory studies of waves and instabilities in dusty plasmas. Phys. Plasmas 5, 1607.CrossRefGoogle Scholar
Molotkov, V. I., Nefedov, A. P., Torchinskii, V. M., Fortov, V. E. and Khrapak, A. G. 1999 Dust acoustic waves in a DC glow-discharge plasma. J. Exp. Theor. Phys. 89, 477.CrossRefGoogle Scholar
Northrop, T. G. 1992 Dusty plasmas. Phys. Scr. 45, 475.CrossRefGoogle Scholar
Pieper, J. B. and Goree, J. 1996 Dispersion of plasma dust acoustic waves in the strong-coupling regime. Phys. Rev. Lett. 77, 3137.CrossRefGoogle ScholarPubMed
Pierrad, V. and Lazar, M. 2010 Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153.CrossRefGoogle Scholar
Prabhakara, H. R. and Tanna, V. L. 1996 Trapping of dust and dust acoustic waves in laboratory plasmas. Phys. Plasmas 3, 3176.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G 2006a Debye length in non-Maxwellian plasmas. Phys. Scr. 74, 145.CrossRefGoogle Scholar
Rubab, N. and Murtaza, G 2006b Dust-charge fluctuations with non-Maxwellian distribution functions. Phys. Scr. 73, 178.CrossRefGoogle Scholar
Shukla, P. K. 2001 A survey of dusty plasma physics. Phys. Plasmas 8, 1791.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol, UK: Institute of Physics.CrossRefGoogle Scholar
Shukla, P. K. and Silin, V. P. 1992 Dust ion-acoustic wave. Phys. Scr. 45, 508.CrossRefGoogle Scholar
Summers, D. and Thorne, R. M. 1991 The modified plasma dispersion function. Phys. Fluids B 8, 1835.CrossRefGoogle Scholar
Vasyliunas, V. M. 1968 A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geoohys. Res. 73, 2839.CrossRefGoogle Scholar
Vyas, V., Hebner, G. A. and Kushner, M. J. 2002 Self-consistent three-dimensional model of dust particle transport and formation of Coulomb crystals in plasma processing reactors. J. Appl. Phys. 92, 6451.CrossRefGoogle Scholar
Whipple, E. C., Northrupt, T. G. and Mendis, D. A. 1985 The electrostatics of a dusty plasma. J. Geophys. Res. 90, 7405.CrossRefGoogle Scholar
Young, B., Cravens, T. E., Armstrong, T. P. and Friauf, R. J. 1994 A two-dimensional particle-in-cell model of a dusty plasma. J. Geophys. Res. 99, 2255.CrossRefGoogle Scholar