Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T05:59:26.208Z Has data issue: false hasContentIssue false

Effect of driving frequency on dust particle dynamics in radiofrequency capacitive argon discharge

Published online by Cambridge University Press:  26 March 2021

Abdelhak Missaoui*
Affiliation:
Laboratory of Physics of Matter and Radiation, Faculty of Sciences, Mohammed I University, Oujda60040, Morocco
Morad El kaouini
Affiliation:
LMASI, Electromagnetism, Physics of Plasmas and Applications, Polydisciplinary Faculty of Nador, Selouane62700, Morocco
Hassan Chatei
Affiliation:
Laboratory of Physics of Matter and Radiation, Faculty of Sciences, Mohammed I University, Oujda60040, Morocco
*
Email address for correspondence: abdelhakmissaoui92@gmail.com

Abstract

This paper investigates the influence of the driving frequency on the dynamics of a single dust particle in argon radiofrequency discharge. A one-dimensional fluid model is presented and solved in the entire inter-electrode domain using the finite difference method. In order to solve the particle equation of motion, the coefficients describing the amplification and the damping of the dust particle oscillations are analytically calculated around the equilibrium position, these coefficients allow us to find the relation between the plasma and dust parameters. The results obtained cover the discharge characteristics, the charge and the dynamics of the dust particle. It has been found that the driving frequency has a significant effect on not only the discharge properties but also on the damped oscillatory motion and the equilibrium position of the dust particle. Hence, these oscillations become closer to the electrodes with increasing driving frequency whereas the dust equilibrium position becomes relatively farther from the powered electrode when the dust size decreases.

Type
Research Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akdim, M.R. & Goedheer, W.J. 2003 Modeling the effect of dust on the plasma parameters in a dusty argon discharge under microgravity. J. Phys. Rev. E 67 (6), 066407.CrossRefGoogle Scholar
Benyoucef, D., Yousfi, M., Belmadani, B. & Settaouti, A. 2010 PIC MC using free path for the simulation of low-pressure RF discharge in argon. J. IEEE Trans. Plasma Sci. 38 (4), 902908.CrossRefGoogle Scholar
Bleecker, K.D., Bogaerts, A. & Goedheer, W.J. 2006 Modelling of nanoparticle coagulation and transport dynamics in dusty silane discharges. J. New Phys. 8 (9), 178178.CrossRefGoogle Scholar
Boeuf, J.P. 1987 Numerical model of RF glow discharges. J. Phys. Rev. A 36 (6), 27822792.CrossRefGoogle ScholarPubMed
Bogaerts, A., Neyts, R. & Gijbels, J.J. A.M. 2002 Gas discharge plasmas and their applications. J. Spectrochim. Acta B 57 (4), 609658.CrossRefGoogle Scholar
Colgan, M.J., Meyyappan, M. & Murnick, D.E. 1994 Very high-frequency capacitively coupled argon discharges. J. Plasma Sources Sci. Technol. 3 (2), 181189.CrossRefGoogle Scholar
Davoudabadi, M. & Mashayek, F. 2006 Dust particle dynamics in low-pressure plasma reactor. J. Appl. Phys. 100 (8), 083302.CrossRefGoogle Scholar
El kaouini, M., Chatei, H. & Bougdira, J. 2014 Dynamics of dust particles in a collisional radio-frequency plasma sheath. J. Phys. Scr. T161, 014052.CrossRefGoogle Scholar
Epstein, P.S. 1924 On the resistance experienced by spheres in their motion through gases. J. Phys. Rev. 23 (6), 710733.CrossRefGoogle Scholar
Goedheer, W.J. & Land, V. 2008 Simulation of dust voids in complex plasmas. J. Plasma Phys. Control. Fusion 50 (12), 124022.CrossRefGoogle Scholar
Goedheer, W.J., Land, V. & Venema, J. 2009 Modelling of voids in complex radio frequency plasmas. J. Contrib. Plasma Phys. 49 (4–5), 199214.CrossRefGoogle Scholar
Graves, D.B. 1994 Plasma processing. J. IEEE Trans. Plasma Sci. 22 (1), 3142.CrossRefGoogle Scholar
Grubert, G.K., Becker, M.M. & Loffhagen, D. 2009 Why the local-mean-energy approximation should be used in hydrodynamic plasma descriptions instead of the local-field approximation. J. Phys. Rev. E 80 (3), 036405.CrossRefGoogle ScholarPubMed
Heintz, M.J. & Hieftje, G.M. 1995 Effect of driving frequency on the operation of a radiofrequency glow discharge emission source. J. Spectrochim. Acta B 50 (9), 11251141.CrossRefGoogle Scholar
Horn, C., Davoudabadi, M. & Shotorban, B. 2011 Effects of radiofrequency on dust particle dynamics in a plasma reactor. J. Appl. Phys. 110 (11), 113305.CrossRefGoogle Scholar
Huang, S. & Gudmundsson, J.T. 2014 A current driven capacitively coupled chlorine discharge. J. Plasma Sources Sci. Technol. 23 (2), 025015.CrossRefGoogle Scholar
Hutchinson, I.H. 2005 Spherical particle interaction with flowing plasma: computational discoveries. AIP Conf. Proc. 799 (1), 3847.CrossRefGoogle Scholar
Hutchinson, I.H. 2006 Collisionless ion drag force on a spherical grain. J. Plasma Phys. Control. Fusion 48 (2), 185202.CrossRefGoogle Scholar
Ivlev, A.V., Khrapak, S.A., Zhdanov, S.K., Morfill, G.E. & Joyce, G. 2004 Force on a charged test particle in a collisional flowing plasma. J. Phys. Rev. Lett. 92 (20), 205007.CrossRefGoogle Scholar
Ivlev, A.V., Konopka, U. & Morfill, G. 2000 Influence of charge variation on particle oscillations in the plasma sheath. J. Phys. Rev. E 62 (2), 27392744.CrossRefGoogle ScholarPubMed
Ivlev, A.V., Zhdanov, S.K., Khrapak, S.A. & Morfill, G.E. 2005 Kinetic approach for the ion drag force in a collisional plasma. J. Phys. Rev. E 71 (1), 016405.CrossRefGoogle Scholar
Khrapak, S.A. 2013 Electron and ion thermal forces in complex (dusty) plasma. J. Phys. Plasmas 20 (1), 013703.CrossRefGoogle Scholar
Khrapak, S.A., Ivlev, A.V., Morfill, G.E. & Thomas, H.M. 2002 Ion drag force in complex plasmas. J. Phys. Rev. E 66 (4), 046414.CrossRefGoogle ScholarPubMed
Khrapak, S.A., Ratynskaia, S.V., Zobnin, A.V., Usachev, A.D., Yaroshenko, V.V., Thoma, M.H., Kretschmer, M., Höfner, H., Morfill, G.E., Petrov, O.F., et al. 2005 Particle charge in the bulk of gas discharges. J. Phys. Rev. E 72 (1), 016406.CrossRefGoogle ScholarPubMed
Kitajima, T., Takeo, Y., Nakano, N. & Makabe, T. 1998 Effects of frequency on the two-dimensional structure of capacitively coupled plasma in Ar. J. Appl. Phys. 84 (11), 59285936.CrossRefGoogle Scholar
Land, V., Matthews, L.S., Hyde, T.W. & Bolser, D. 2010 Fluid modeling of void closure in microgravity noble gas complex plasmas. J. Phys. Rev. E 81 (5), 056402.CrossRefGoogle ScholarPubMed
Liu, Y., Booth, J.P. & Chabert, P. 2018 Effect of frequency on the uniformity of symmetrical RF CCP discharges. J. Plasma Sources Sci. Technol. 27 (5), 055012.CrossRefGoogle Scholar
Liu, Y., Zhang, Q., Jiang, W., Lu, W.Q. & Wang, Y. 2012 Experimental validation and simulation of collisionless bounce-resonance heating in capacitively coupled radio-frequency discharges. J. Plasma Sources Sci. Technol. 21 (3), 035010.CrossRefGoogle Scholar
Lymberopoulos, D.P. & Economou, D.J. 1993 Fluid simulations of glow discharges: effect of metastable atoms in argon. J. Appl. Phys. 73 (8), 36683679.CrossRefGoogle Scholar
Matthews, L.S., Sanford, D.L., Kostadinova, E.G., Ashrafi, K.S., Guay, E. & Hyde, T.W. 2020 Dust charging in dynamic ion wakes. J. Phys. Plasmas 27 (2), 023703.CrossRefGoogle Scholar
Mikikian, M., Cavarroc, M., Couëdel, L., Tessier, Y. & Boufendi, L. 2010 Dust particles in low-pressure plasmas: formation and induced phenomena. J. Pure Appl. Chem. 82 (6), 1273.CrossRefGoogle Scholar
Nitter, T. 1996 Levitation of dust in rf and dc glow discharges. J. Plasma Sources Sci. Technol. 5 (1), 93111.CrossRefGoogle Scholar
Rakhimova, T.V., Braginsky, O.V., Ivanov, V.V., Kim, T.K., Kong, J.T., Kovalev, A.S., Lopaev, D.V., Mankelevich, Y.A., Proshina, O.V. & Vasilieva, O.N., et al. 2006 Experimental and theoretical study of RF plasma at low and high frequency. J. IEEE Trans. Plasma Sci. 34 (3), 867877.CrossRefGoogle Scholar
Samir, T., Liu, Y., Zhao, L. & Zhou, Y. 2017 Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure. J. Chin. Phys. B 26 (11), 115201.CrossRefGoogle Scholar
Schabel, M., Peterson, T., Sinclair, J. & Lynch, D. 1999 Characterization of trapped particles in rf plasmas. J. Appl. Phys. 86 (4), 18341842.CrossRefGoogle Scholar
Sharma, S., Sen, A., Sirse, N., Turner, M.M. & Ellingboe, A.R. 2018 Plasma density and ion energy control via driving frequency and applied voltage in a collisionless capacitively coupled plasma discharge. J. Phys. Plasmas 25 (8), 080705.CrossRefGoogle Scholar
Sharma, S., Sirse, N., Kaw, P.K., Turner, M.M. & Ellingboe, A.R. 2016 Effect of driving frequency on the electron energy distribution function and electron-sheath interaction in a low pressure capacitively coupled plasma. J. Phys. Plasmas 23 (11), 110701.CrossRefGoogle Scholar
Surendra, M. & Graves, D.B. 1991 Capacitively coupled glow discharges at frequencies above 13.56 MHz. J. Appl. Phys. Lett. 59 (17), 20912093.CrossRefGoogle Scholar
Tomme, E.B., Annaratone, B.M. & Allen, J.E. 2000 Damped dust oscillations as a plasma sheath diagnostic. J. Plasma Sources Sci. Technol. 9 (2), 8796.CrossRefGoogle Scholar
Vahedi, V., Birdsall, C.K., Lieberman, M.A., Dipeso, G. & Rognlien, T.D. 1993 Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations. J. Phys. Fluids B 5 (7), 27192729.CrossRefGoogle Scholar
Wilczek, S., Trieschmann, J., Schulze, J., Schuengel, E., Brinkmann, R.P., Derzsi, A., Korolov, I., Donkó, Z. & Mussenbrock, T. 2015 The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges. J. Plasma Sources Sci. Technol. 24 (2), 024002.CrossRefGoogle Scholar
Zhao, H., Li, B., Wang, W., Hu, Y. & Wang, Y. 2016 Effect of excitation frequency on characteristics of mixture discharge in fast-axial-flow radio frequency-excited carbon dioxide laser. J. Front. Optoelectron. 9 (4), 592598.CrossRefGoogle Scholar
Zhao, L., Liu, Y. & Samir, T. 2018 Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling. J. Chin. Phys. B 27 (2), 025201.CrossRefGoogle Scholar
Zhu, X., Chen, W., Zhang, S., Guo, Z., Hu, D. & Pu, Y. 2007 Electron density and ion energy dependence on driving frequency in capacitively coupled argon plasmas. J. Phys. D 40 (22), 70197023.CrossRefGoogle Scholar