Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T16:10:38.958Z Has data issue: false hasContentIssue false

Effective factors on twisted terahertz radiation generation in a rippled plasma

Published online by Cambridge University Press:  16 January 2017

Hassan Sobhani*
Affiliation:
Young Researchers and Elite Club, Qom Branch, Islamic Azad University, Qom, Iran
Elham Dadar
Affiliation:
Faculty of Economics, Mofid University of Qom, Qom, Iran
Sahar Feili
Affiliation:
Department of Physics, Shahid Bahonar University, Kerman, Iran
*
Email address for correspondence: Hassan960sob@gmail.com

Abstract

Based on the beating of two Laguerre–Gaussian laser beams in a rippled plasma medium, the effective factors such as plasma density, Gouy phase and orbital angular momentums of input lasers on the output twisted terahertz radiation are investigated. As a result, the amplitude of the generated vortex terahertz radiation is an increasing function of plasma density. The vortex terahertz intensity is strongly dependent on the orbital angular momentum of the input lasers. The terahertz output amplitude increases by decreasing the orbital angular momentum of the Laguerre–Gaussian input lasers. Here, by employing a suitably ripple wavenumber, the destroyer effect of the relative Gouy phase of the input lasers is removed, and perfect phase matching is satisfied.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonsen, T. M. Jr, Palastro, J. & Milchberg, H. M. 2007 Excitation of terahertz radiation by laser pulses in nonuniform plasma channels. Phys. Plasmas 14 (3), 033107.CrossRefGoogle Scholar
Beijersbergen, M., Allen, L., Van der Veen, H. E. L. O. & Woerdman, J. 2003 Astigmatic laser mode converters and transfer of orbital angular momentum. Optical Angular Momentum 96, 123.Google Scholar
Bozinovic, N., Yue, Y., Ren, Y., Tur, M., Kristensen, P., Huang, H., Willner, A. E. & Ramachandran, S. 2013 Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340 (6140), 15451548.CrossRefGoogle ScholarPubMed
Chen, H.-T., O’Hara, J. F., Azad, A. K., Taylor, A. J., Averitt, R. D., Shrekenhamer, D. B. & Padilla, W. J. 2008 Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon. 2 (5), 295298.CrossRefGoogle Scholar
Dennis, M. R., King, R. P., Jack, B., OHolleran, K. & Padgett, M. J. 2010 Isolated optical vortex knots. Nat. Phys. 6 (2), 118121.CrossRefGoogle Scholar
Ferguson, B. & Zhang, X.-C. 2002 Materials for terahertz science and technology. Nat. Mater. 1 (1), 2633.CrossRefGoogle ScholarPubMed
Fickler, R., Lapkiewicz, R., Plick, W. N., Krenn, M., Schaeff, C., Ramelow, S. & Zeilinger, A. 2012 Quantum entanglement of high angular momenta. Science 338 (6107), 640643.CrossRefGoogle ScholarPubMed
Genevet, P., Yu, N., Aieta, F., Lin, J., Kats, M. A., Blanchard, R., Scully, M. O., Gaburro, Z. & Capasso, F. 2012 Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100 (1), 013101.CrossRefGoogle Scholar
Grier, D. G. 2003 A revolution in optical manipulation. Nature 424 (6950), 810816.CrossRefGoogle ScholarPubMed
Hazra, S., Chini, T. K., Sanyal, M. K., Grenzer, J. & Pietsch, U. 2004 Ripple structure of crystalline layers in ion-beam-induced si wafers. Phys. Rev. B 70 (12), 121307.CrossRefGoogle Scholar
He, J., Wang, X., Hu, D., Ye, J., Feng, S., Kan, Q. & Zhang, Y. 2013 Generation and evolution of the terahertz vortex beam. Opt. Express 21 (17), 2023020239.CrossRefGoogle ScholarPubMed
Hebling, J., Fülöp, J. A., Mechler, M. I., Pálfalvi, L., Tőke, C. & Almási, G.2011 Optical manipulation of relativistic electron beams using thz pulses. arXiv:1109.6852.Google Scholar
Heckenberg, N. R., McDuff, R., Smith, C. P., Rubinsztein-Dunlop, H. & Wegener, M. J. 1992 Laser beams with phase singularities. Opt. Quant. Electron. 24 (9), S951S962.CrossRefGoogle Scholar
Humphreys, K., Loughran, J. P., Gradziel, M., Lanigan, W., Ward, T., Murphy, J. A. & O’sullivan, C. 2004 Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering. In Engineering in Medicine and Biology Society, 2004. IEMBS’04. 26th Annual International Conference of the IEEE, vol. 1, pp. 13021305.Google Scholar
Kaur, S., Sharma, A. K. & Salih, H. A. 2009 Resonant second harmonic generation of a Gaussian electromagnetic beam in a collisional magnetoplasma. Phys. Plasmas 16 (4), 042509.Google Scholar
Kawase, K., Ogawa, Y., Watanabe, Y. & Inoue, H. 2003 Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11 (20), 25492554.CrossRefGoogle ScholarPubMed
Kuo, C.-C., Pai, C.-H., Lin, M.-W., Lee, K.-H., Lin, J.-Y., Wang, J. & Chen, S.-Y. 2007 Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett. 98 (3), 033901.CrossRefGoogle ScholarPubMed
Lee, Y.-S. 2009 Principles of Terahertz Science and Technology, vol. 170. Springer Science and Business Media.Google Scholar
Malik, A. K. & Malik, H. K. 2013 Tuning and focusing of terahertz radiation by DC magnetic field in a laser beating process. IEEE J. Quant. Electron. 49 (2), 232237.CrossRefGoogle Scholar
Malik, A. K., Malik, H. K. & Kawata, S. 2010 Investigations on terahertz radiation generated by two superposed femtosecond laser pulses. J. Appl. Phys. 107 (11), 113105.CrossRefGoogle Scholar
Malik, A. K., Malik, H. K. & Nishida, Y. 2011a Terahertz radiation generation by beating of two spatial-gaussian lasers. Phys. Lett. A 375 (8), 11911194.CrossRefGoogle Scholar
Malik, A. K., Malik, H. K. & Stroth, U. 2011b Strong terahertz radiation by beating of spatial-triangular lasers in a plasma. Appl. Phys. Lett. 99 (7), 071107.CrossRefGoogle Scholar
Malik, A. K., Malik, H. K. & Stroth, U. 2012 Terahertz radiation generation by beating of two spatial-Gaussian lasers in the presence of a static magnetic field. Phys. Rev. E 85 (1), 016401.Google ScholarPubMed
Malik, H. K. 2015 Terahertz radiation generation by lasers with remarkable efficiency in electron–positron plasma. Phys. Lett. A 379 (43), 28262829.CrossRefGoogle Scholar
Malik, H. K. & Malik, A. K. 2012 Strong and collimated terahertz radiation by super-Gaussian lasers. Europhys. Lett. 100 (4), 45001.CrossRefGoogle Scholar
Markelz, A. G., Roitberg, A. & Heilweil, E. J. 2000 Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 320 (1), 4248.CrossRefGoogle Scholar
Ohno, S., Hamano, A., Miyamoto, K., Suzuki, C. & Ito, H. 2009 Surface mapping of carrier density in a gan wafer using a frequency-agile thz source. J. Eur. Opt. Soc.-Rapid Publications 4.CrossRefGoogle Scholar
Ohno, S., Miyamoto, K., Minamide, H. & Ito, H. 2010 New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband thz region. Opt. Express 18 (16), 1730617312.CrossRefGoogle ScholarPubMed
Omatsu, T., Chujo, K., Miyamoto, K., Okida, M., Nakamura, K., Aoki, N. & Morita, R. 2010 Metal microneedle fabrication using twisted light with spin. Opt. Express 18 (17), 1796717973.CrossRefGoogle ScholarPubMed
Orenstein, J. & Millis, A. J. 2000 Advances in the physics of high-temperature superconductivity. Science 288 (5465), 468474.CrossRefGoogle ScholarPubMed
Paterson, L., MacDonald, M. P., Arlt, J., Sibbett, W., Bryant, P. E. & Dholakia, K. 2001 Controlled rotation of optically trapped microscopic particles. Science 292 (5518), 912914.CrossRefGoogle ScholarPubMed
Pickwell, E. & Wallace, V. P. 2006 Biomedical applications of terahertz technology. J. Phys. D: Appl. Phys. 39 (17), R301.CrossRefGoogle Scholar
Sanvitto, D., Marchetti, F. M., Szymańska, M. H., Tosi, G., Baudisch, M., Laussy, F. P., Krizhanovskii, D. N., Skolnick, M. S., Marrucci, L., Lemaitre, A. et al. 2010 Persistent currents and quantized vortices in a polariton superfluid. Nat. Phys. 6 (7), 527533.CrossRefGoogle Scholar
Simpson, N. B., McGloin, D., Dholakia, K., Allen, L. & Padgett, M. J. 1998 Optical tweezers with increased axial trapping efficiency. J. Mod. Opt. 45 (9), 19431949.CrossRefGoogle Scholar
Singh, D. & Malik, H. K. 2014 Terahertz generation by mixing of two super-Gaussian laser beams in collisional plasma. Phys. Plasmas 21 (8), 083105.Google Scholar
Singh, D. & Malik, H. K. 2015 Enhancement of terahertz emission in magnetized collisional plasma. Plasma Sources Sci. Technol. 24 (4), 045001.CrossRefGoogle Scholar
Singh, D. & Malik, H. K 2016 Emission of strong terahertz pulses from laser wakefields in weakly coupled plasma. Nucl. Instrum. Meth. Phys. Res. A 829, 403.CrossRefGoogle Scholar
Sobhani, H., Rooholamininejad, H. & Bahrampour, A. R. 2016a Creation of twisted terahertz waves carrying orbital angular momentum via a plasma vortex. J. Phys. D: Appl. Phys. 49, 295107.CrossRefGoogle Scholar
Sobhani, H., Rooholamininejad, H. & Bahrampour, A. R. 2016b Terahertz twisted beams generation in plasma. Eur. Phys. J. D 70, 168.CrossRefGoogle Scholar
Sobhani, H., Vaziri, M., Rooholamininejad, H. & Bahrampour, A. R. 2016c Impact of nonlinear absorption on propagation of microwave in a plasma filled rectangular waveguide. Waves in Random Complex Media 26, 272.CrossRefGoogle Scholar
Sobhani, H., Vaziri, M., Rooholamininejad, H. & Bahrampour, A. R. 2016d Nonlinear interaction of intense hypergeometric Gaussian subfamily laser beams in plasma. Opt. Laser Technol. 81, 40.CrossRefGoogle Scholar
Toyoda, K., Miyamoto, K., Aoki, N., Morita, R. & Omatsu, T. 2012 Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12 (7), 36453649.CrossRefGoogle ScholarPubMed
Wang, J., Yang, J.-Y., Fazal, I. M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M. et al. 2012 Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6 (7), 488496.CrossRefGoogle Scholar
Watabe, M., Juman, G., Miyamoto, K. & Omatsu, T. 2014 Light induced conch-shaped relief in an azo-polymer film. Sci. Rep. 4.CrossRefGoogle Scholar
Xie, Z., Wang, X. & Zhang, Y. 2013 Active terahertz holography. In International Conference on Optical Instruments and Technology (OIT2013), 90470B.Google Scholar
Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F. & Gaburro, Z. 2011 Light propagation with phase discontinuities: generalized laws of reflection and refraction. science 334 (6054), 333337.CrossRefGoogle ScholarPubMed
Zhang, S., Park, Y.-S., Li, J., Lu, X., Zhang, W. & Zhang, X. 2009 Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102 (2), 023901.Google ScholarPubMed
Zhu, L., Wei, X., Wang, J., Zhang, Z., Li, Z., Zhang, H., Li, S., Wang, K. & Liu, J. 2014 Experimental demonstration of basic functionalities for 0.1-thz orbital angular momentum (oam) communications. In Optical Fiber Communication Conference, p. M3K–7. Optical Society of America.CrossRefGoogle Scholar