Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T03:10:06.380Z Has data issue: false hasContentIssue false

Effects of higher-order nonlinearity and finite geometry on the propagation of KdV solitons

Published online by Cambridge University Press:  13 March 2009

B. Ghosh
Affiliation:
Department of Physics, R.K. Mission Vidyamandir Belur Math, Howrah 711 202, India
K. P. Das
Affiliation:
Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Calcutta 700 009, India

Abstract

Using reductive perturbation theory and a planar waveguide geometry, the effects of higher-order nonlinearity and finite boundaries on the propagation of electron plasma and ion-acoustic KdV solitons are investigated by taking into account finite electron and ion temperatures. For an electron plasma wave, the higher-order nonlinearity is found to increase the amplitude of the soliton and slightly decrease the width of the soliton compared with that predicted by the first-order theory. For an ion-acoustic wave the higher-order-nonlinearity and finite-boundary effects give rise to a W-shaped soliton.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghosh, B. & Das, K. P. 1985 Plasma Phys. 27, 969.Google Scholar
Ghosh, B. & Das, K. P. 1987 Beitr. Plasma Phys. 27, 55.CrossRefGoogle Scholar
Ichikawa, Y. H., Mitsuhashi, T. & Konno, K. 1976 J. Phys. Soc. Jpn, 41, 1382.Google Scholar
Ikezi, H. 1973 Phys. Fluids, 16, 1668.Google Scholar
Ikezi, H., Barrett, P. J., White, R. B. & Wong, A. Y. 1971 Phys. Fluids, 14, 1997.CrossRefGoogle Scholar
Ikezi, H., Taylor, R. J. & Baker, D. R. 1970 Phys. Rev. Lett. 25, 11.CrossRefGoogle Scholar
Karpman, V. L., Lynov, J. P., Michelsen, P., Pecseli, H. L., Rasmussen, J. J. & Turikov, V. A. 1979 Phys. Rev. Lett. 43, 210.Google Scholar
Karpman, V. I., Lynov, J. P., Michelsen, P., Pecseli, H. L., Rasmussen, J. J. & Turikov, V. A. 1980 Phys. Fluids, 23, 1782.Google Scholar
Kodama, Y. & Taniuti, T. 1978 J. Phys. Soc. Jpn, 45, 298.Google Scholar
Lynov, J. P., Michelsen, P., Pecseli, H. L., Rasmussen, J. J., Saeki, K. & Turikov, V. 1979 Physica Scripta, 20, 328.CrossRefGoogle Scholar
Ott, E. & Sudan, R. N. 1969 Phys. Fluids, 12, 2388.CrossRefGoogle Scholar
Saeki, K. 1973 J. Phys. Soc. Jpn, 35, 251.CrossRefGoogle Scholar
Tagare, S. G. & Reddy, R. V. 1986 J. Plasma Phys. 35, 219.CrossRefGoogle Scholar
Taniuti, T. 1974 Prog. Theor. Phys. Suppl. no. 55.Google Scholar
Washimi, H. & Taniuti, T. 1966 Phys. Rev. Lett. 17, 996.Google Scholar