Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-14T06:22:31.026Z Has data issue: false hasContentIssue false

Energetic particles in magnetotail reconnection

Published online by Cambridge University Press:  04 December 2014

Ivy Bo Peng*
Affiliation:
High Performance Computing and Visualization Department (HPCViz), KTH Royal Institute of Technology, Teknikringen 14, Stockholm 100 44, Sweden
Juris Vencels
Affiliation:
High Performance Computing and Visualization Department (HPCViz), KTH Royal Institute of Technology, Teknikringen 14, Stockholm 100 44, Sweden
Giovanni Lapenta
Affiliation:
Department of Mathematics, Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven, Celestijnenlaan 200B, bus 2400 B-3001 Leuven, Belgium
Andrey Divin
Affiliation:
Disciplinary Domain of Science and Technology, Swedish Institute of Space Physics, Uppsala Division, Polacksbacken, SE-751 21, Uppsala, Sweden
Andris Vaivads
Affiliation:
Disciplinary Domain of Science and Technology, Swedish Institute of Space Physics, Uppsala Division, Polacksbacken, SE-751 21, Uppsala, Sweden
Erwin Laure
Affiliation:
High Performance Computing and Visualization Department (HPCViz), KTH Royal Institute of Technology, Teknikringen 14, Stockholm 100 44, Sweden
Stefano Markidis
Affiliation:
High Performance Computing and Visualization Department (HPCViz), KTH Royal Institute of Technology, Teknikringen 14, Stockholm 100 44, Sweden
*
Email address for correspondence: bopeng@kth.se

Abstract

We carried out a 3D fully kinetic simulation of Earth's magnetotail magnetic reconnection to study the dynamics of energetic particles. We developed and implemented a new relativistic particle mover in iPIC3D, an implicit Particle-in-Cell code, to correctly model the dynamics of energetic particles. Before the onset of magnetic reconnection, energetic electrons are found localized close to current sheet and accelerated by lower hybrid drift instability. During magnetic reconnection, energetic particles are found in the reconnection region along the x-line and in the separatrices region. The energetic electrons are first present in localized stripes of the separatrices and finally cover all the separatrix surfaces. Along the separatrices, regions with strong electron deceleration are found. In the reconnection region, two categories of electron trajectory are identified. First, part of the electrons are trapped in the reconnection region, bouncing a few times between the outflow jets. Second, part of the electrons pass the reconnection region without being trapped. Different from electrons, energetic ions are localized on the reconnection fronts of the outflow jets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G. and Hwang, K.-J. 2011 Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nature Phys. 7 (4), 360365.CrossRefGoogle Scholar
Birdsall, C. K. and Langdon, A. B. 2004 Plasma Physics Via Computer Simulation. New York: CRC Press.Google Scholar
Birn, J., Artemyev, A. V., Baker, D. N., Echim, M., Hoshino, M. and Zelenyi, L. M. 2012 Particle acceleration in the magnetotail and aurora. Space Sci. Rev. 173 (1–4), 49102.Google Scholar
Birn, J.et al. 2001 Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. (Space Phys.) 106, 37153720.CrossRefGoogle Scholar
Birn, J. and Priest, E. R. 2007 Reconnection of Magnetic Fields. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Daughton, W. 2003 Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10, 3103.CrossRefGoogle Scholar
Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B. J., Bergen, B. and Bowers, K. J. 2011 Role of electron physics in the development of turbulent magnetic reconnection in collisionless plasmas. Nature Phys. 7, 539542.CrossRefGoogle Scholar
Divin, A., Lapenta, G., Markidis, S., Newman, D. L. and Goldman, M. V. 2012 Numerical simulations of separatrix instabilities in collisionless magnetic reconnection. Phys. Plasmas (1994-present) 19 (4), 042 110.CrossRefGoogle Scholar
Divin, A., Markidis, S., Lapenta, G., Semenov, V. S., Erkaev, N. V. and Biernat, H. K. 2010 Model of electron pressure anisotropy in the electron diffusion region of collisionless magnetic reconnection. Phys. Plasmas (1994–present) 17 (12), 122 102.Google Scholar
Egedal, J., Fox, W., Katz, N., Porkolab, M., Øieroset, M., Lin, R. P., Daughton, W. and Drake, J. F. 2008 Evidence and theory for trapped electrons in guide field magnetotail reconnection. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2008JA013520.CrossRefGoogle Scholar
Egedal, J., Øieroset, M., Fox, W. and Lin, R. P. 2005 In situ discovery of an electrostatic potential, trapping electrons and mediating fast reconnection in the earth's magnetotail. Phys. Rev. Lett. 94 (2), 025 006.Google Scholar
Finn, J. M. 2006 Magnetic reconnection: null point. Nature Phys. 2 (7), 445446.Google Scholar
Fu, X. R., Lu, Q. M. and Wang, S. 2006 The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas (1994–present) 13 (1), 012 309.CrossRefGoogle Scholar
Hockney, R. W. and Eastwood, J. W. 1988 Computer Simulation using Particles. New York: CRC Press.CrossRefGoogle Scholar
Hoshino, M. 2005 Electron surfing acceleration in magnetic reconnection. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2005JA011229.Google Scholar
Hoshino, M., Mukai, T., Terasawa, T. and Shinohara, I. 2001 Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res.: Space Phys. (1978–2012) 106 (A11), 25 97925 997.CrossRefGoogle Scholar
Kivelson, M. G. and Russell, C. T. 1995 Introduction to Space Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lapenta, G., Brackbill, J. U. and Daughton, W. S. 2003 The unexpected role of the lower hybrid drift instability in magnetic reconnection in three dimensions. Phys. Plasmas 10 (5), 15771587.Google Scholar
Lapenta, G., Brackbill, J. U. and Ricci, P. 2006 Kinetic approach to microscopic macroscopic coupling in space and laboratory plasmas. Phys. Plasmas 13 (5), 055 904.CrossRefGoogle Scholar
Lapenta, G., Goldman, M., Newman, D., Markidis, S. and Divin, A. 2014 Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection. Phys. Plasmas (1994–present) 21 (5), 055 702.Google Scholar
Lapenta, G., Markidis, S., Divin, A., Goldman, M. and Newman, D. 2010 Scales of guide field reconnection at the hydrogen mass ratio. Phys. Plasmas (1994–present) 17 (8), 082 106.Google Scholar
Lapenta, G., Markidis, S., Divin, A., Goldman, M. V. and Newman, D. L. 2011 Bipolar electric field signatures of reconnection separatrices for a hydrogen plasma at realistic guide fields. Geophys. Res. Lett. 38 L17 104.Google Scholar
Loureiro, N. F., Schekochihin, A. A. and Zocco, A. 2013 Fast collisionless reconnection and electron heating in strongly magnetized plasmas. Phys. Rev. Lett. 111 (2), 025 002.CrossRefGoogle ScholarPubMed
Markidis, S., Henri, P., Lapenta, G., Divin, A., Goldman, M. V., Newman, D. and Eriksson, S. 2012 Collisionless magnetic reconnection in a plasmoid chain. Nonlinear Process. Geophys. 19 (1), 145153.Google Scholar
Markidis, S., Lapenta, G. and , Rizwan-uddin 2010 Multi-scale simulations of plasma with iPIC3D. Math. Comput. Simul. 80 (7), 15091519.CrossRefGoogle Scholar
Nagai, T., Shinohara, I., Fujimoto, M., Hoshino, M., Saito, Y., Machida, S. and Mukai, T. 2001 Geotail observations of the hall current system: evidence of magnetic reconnection in the magnetotail. J. Geophys. Res.: Space Phys. 106 (A11), 25 92925 949.Google Scholar
Nagai, T., Shinohara, I., Zenitani, S., Nakamura, R., Nakamura, T. K. M., Fujimoto, M., Saito, Y., and Mukai, T.. “Three-dimensional structure of magnetic reconnection in the magnetotail from Geotail observations.” Journal of Geophysical Research: Space Physics 118, no. 4 (2013): 1667–1678.Google Scholar
Noguchi, K., Tronci, C., Zuccaro, G. and Lapenta, G. 2007 Formulation of the relativistic moment implicit particle-in-cell method. Phys. Plasmas (1994–present) 14 (4), 042 308.Google Scholar
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. 2002a Evidence for electron acceleration up to 300 keV in the magnetic reconnection diffusion region of earth's magnetotail. Phys. Rev. Lett. 89, 195 001.Google Scholar
Øieroset, M., Lin, R. P., Phan, T. D., Larson, D. E. and Bale, S. D. 2002b Evidence for electron acceleration up to 300 kev in the magnetic reconnection diffusion region of Earth's magnetotail. Phys. Rev. Lett. 89 (19), 195 001.Google Scholar
Ottaviani, M. and Porcelli, F. 1993 Nonlinear collisionless magnetic reconnection. Phys. Rev. Lett. 71 (23), 3802.Google Scholar
Pegoraro, F., Borgogno, D., Califano, F., Sarto, D. D., Echkina, E., Grasso, D., Liseikina, T. and Porcelli, F. 2004 Developments in the theory of collisionless reconnection in magnetic configurations with a strong guide field. Nonlinear Process. Geophys. 11 (5/6), 567577.Google Scholar
Press, W. H. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn.Cambridge: Cambridge University Press.Google Scholar
Priest, E. and Forbes, T. 2007 Magnetic reconnection: MHD theory and applications. Cambridge: Cambridge University Press.Google Scholar
Retinò, A.et al. 2008 Cluster observations of energetic electrons and electromagnetic fields within a reconnecting thin current sheet in the earth's magnetotail. J. Geophys. Res.: Space Phys. (1978–2012) DOI: 10.1029/2008JA013511.Google Scholar
Ricci, P., Brackbill, J. U., Daughton, W. and Lapenta, G. 2005 New role of the lower-hybrid drift instability in the magnetic reconnection. Phys. Plasmas 12 (5), 055 901.Google Scholar
Ricci, P., Lapenta, G. and Brackbill, J. U. 2003 Electron acceleration and heating in collisionless magnetic reconnection. Phys. Plasmas (1994-present) 10 (9), 35543560.Google Scholar
Russell, C. T. 1971 Geophysical coordinate transformations. Cosm. Electrodyn. 2 (2), 184196.Google Scholar
Sharma, A. S.et al. 2008 Transient and localized processes in the magnetotail: a review. In Ann. Geophys. 26, 9551006. Göttingen.CrossRefGoogle Scholar
Sonnerup, B. U. 1974 Magnetopause reconnection rate. J. Geophys. Res. 79 (10), 15461549.Google Scholar
Speiser, T. W. 1965 Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70 (17), 42194226.CrossRefGoogle Scholar
van der Plas, E. V. and de Blank, H. J. 2007 Temperature gradients in fast collisionless magnetic reconnection. Phys. Rev. Lett. 98 (26), 265 002.Google Scholar
Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M. and Newman, D. 2013 Formation of a transient front structure near reconnection point in 3-D pic simulations. J. Geophys. Res.: Space Phy. 118 (4), 14351449.Google Scholar
Vay, J.-L. 2008 Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas (1994-present) 15 (5), 056 701.Google Scholar