Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T04:00:35.312Z Has data issue: false hasContentIssue false

Entanglement of helicity and energy in kinetic Alfvén wave/whistler turbulence

Published online by Cambridge University Press:  25 September 2014

Sébastien Galtier*
Affiliation:
Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
Romain Meyrand
Affiliation:
Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
*
Email address for correspondence: sebastien.galtier@lpp.polytechnique.fr

Abstract

The role of magnetic helicity is investigated in kinetic Alfvén wave and oblique whistler turbulence in presence of a relatively intense external magnetic field b0e. In this situation, turbulence is strongly anisotropic and the fluid equations describing both regimes are the reduced electron magnetohydrodynamics (REMHD) whose derivation, originally made from the gyrokinetic theory, is also obtained here from compressible Hall magnetohydrodynamics (MHD). We use the asymptotic equations derived by Galtier and Bhattacharjee (2003 Phys. Plasmas10, 3065–3076) to study the REMHD dynamics in the weak turbulence regime. The analysis is focused on the magnetic helicity equation for which we obtain the exact solutions: they correspond to the entanglement relation, n + ñ = −6, where n and ñ are the power law indices of the perpendicular (to b0) wave number magnetic energy and helicity spectra, respectively. Therefore, the spectra derived in the past from the energy equation only, namely n = −2.5 and ñ = −3.5, are not the unique solutions to this problem but rather characterize the direct energy cascade. The solution ñ = −3 is a limit imposed by the locality condition; it is also the constant helicity flux solution obtained heuristically. The results obtained offer a new paradigm to understand solar wind turbulence at sub-ion scales where it is often observed that −3 < n < −2.5.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J. and Robert, P. 2009 Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16), 165 003.CrossRefGoogle ScholarPubMed
Banerjee, D., Ray, S. S., Sahoo, G. and Pandit, R. 2013 Multiscaling in Hall-magnetohydrodynamic turbulence: insights from a shell model. Phys. Rev. Lett. 111 (17), 174 501.CrossRefGoogle ScholarPubMed
Bhattacharjee, A. 2004 Impulsive magnetic reconnection in the Earth's magnetotail and the solar cCorona. Annu. Rev. Astron. Astrophys. 42, 365384.CrossRefGoogle Scholar
Biskamp, D. 2000 Magnetic Reconnection in Plasmas. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Biskamp, D., Schwarz, E. and Drake, J. F. 1996 Two-dimensional electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 76, 12641267.CrossRefGoogle ScholarPubMed
Boldyrev, S., Horaites, K., Xia, Q. and Perez, J. C. 2013 Toward a theory of astrophysical plasma turbulence at subproton scales. Astrophys. J. 777, 41.CrossRefGoogle Scholar
Boldyrev, S. and Perez, J. C. 2012 Spectrum of Kinetic-Alfvén turbulence. Astrophys. J. Lett. 758, L44.CrossRefGoogle Scholar
Bourouaine, S., Alexandrova, O., Marsch, E. and Maksimovic, M. 2012 On spectral breaks in the power spectra of magnetic fluctuations in fast solar wind between 0.3 and 0.9 AU. Astrophys. J. 749, 102.CrossRefGoogle Scholar
Bulanov, S. V., Pegoraro, F. and Sakharov, A. S. 1992 Magnetic reconnection in electron magnetohydrodynamics. Phys. Fluids B 4, 24992508.CrossRefGoogle Scholar
Cai, H.-B., Zhu, S.-P., Chen, M., Wu, S.-Z., He, X. T. and Mima, K. 2011 Magnetic-field generation and electron-collimation analysis for propagating fast electron beams in overdense plasmas. Phys. Rev. E 83 (3), 036 408.CrossRefGoogle ScholarPubMed
Carbone, V. 2012 Scalings, cascade and intermittency in solar wind turbulence. Space Sci. Rev. 172, 343360.CrossRefGoogle Scholar
Chen, C. H. K., Boldyrev, S., Xia, Q. and Perez, J. C. 2013 Nature of subproton scale turbulence in the solar wind. Phys. Rev. Lett. 110 (22), 225 002.CrossRefGoogle ScholarPubMed
Cho, J. 2011 Magnetic helicity conservation and inverse energy cascade in electron MHD wave packets. Phys. Rev. Lett. 106, 191 104.CrossRefGoogle ScholarPubMed
Cho, J. and Lazarian, A. 2004 The anisotropy of electron magnetohydrodynamic turbulence. Astrophys. J. Lett. 615, L41L44.CrossRefGoogle Scholar
Cho, J. and Lazarian, A. 2009 Simulations of electron magnetohydrodynamic turbulence. Astrophys. J. 701, 236252.CrossRefGoogle Scholar
Das, A. 1999 Nonlinear aspects of two-dimensional electron magnetohydrodynamics. Plasma Phys. Control. Fusion 41, A531A538.CrossRefGoogle Scholar
Das, A. and Diamond, P. H. 2000 Theory of two-dimensional mean field electron magnetohydrodynamics. Phys. Plasmas 7, 170177.CrossRefGoogle Scholar
Diamond, P. H., Hasegawa, A. and Mima, K. 2011 Vorticity dynamics, drift wave turbulence, and zonal flows: a look back and a look ahead. Plasma Phys. Control. Fusion 53 (12), 124 001.CrossRefGoogle Scholar
Drake, J. F., Kleva, R. G. and Mandt, M. E. 1994 Structure of thin current layers: implications for magnetic reconnection. Phys. Rev. Lett. 73, 12511254.CrossRefGoogle ScholarPubMed
Dreher, J., Laveder, D., Grauer, R., Passot, T. and Sulem, P. L. 2005 Formation and disruption of Alfvénic filaments in Hall magnetohydrodynamics. Phys. Plasmas 12 (5), 052 319.CrossRefGoogle Scholar
Frieman, E. A. and Chen, L. 1982 Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria. Phys. Fluids 25, 502508.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68, 015 301.CrossRefGoogle ScholarPubMed
Galtier, S. 2006a Multi-scale turbulence in the inner solar wind. J. Low Temp. Phys. 145, 5974.CrossRefGoogle Scholar
Galtier, S. 2006b Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72, 721769.CrossRefGoogle Scholar
Galtier, S. 2008 von Kármán-Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E 77 (1), 015 302.CrossRefGoogle ScholarPubMed
Galtier, S. 2014 Theory of helical turbulence under fast rotation. Phys. Rev. E (R) 89, 041 001.CrossRefGoogle ScholarPubMed
Galtier, S. and Bhattacharjee, A. 2003 Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics. Phys. Plasmas 10, 30653076.CrossRefGoogle Scholar
Galtier, S. and Bhattacharjee, A. 2005 Anisotropic wave turbulence in electron MHD. Plasma Phys. Control. Fusion 47, B691B701.CrossRefGoogle Scholar
Galtier, S. and Buchlin, E. 2007 Multiscale Hall-magnetohydrodynamic turbulence in the solar wind. Astrophys. J. 656, 560566.CrossRefGoogle Scholar
Galtier, S., Nazarenko, S. V. and Newell, A. C. 2001 On wave turbulence in MHD. Nonlinear Proc. Geophys. 8, 141150.CrossRefGoogle Scholar
Galtier, S., Pouquet, A. and Mangeney, A. 2005 On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence. Phys. Plasmas 12 (9), 092 310.CrossRefGoogle Scholar
Ghosh, S. and Goldstein, M. L. 1997 Anisotropy in Hall MHD turbulence due to a mean magnetic field. J. Plasma Phys. 57, 129154.CrossRefGoogle Scholar
Ghosh, S., Siregar, E., Roberts, D. A. and Goldstein, M. L. 1996 Simulation of high-frequency solar wind power spectra using Hall magnetohydrodynamics. J. Geophys. Res. 101, 24932504.CrossRefGoogle Scholar
Goldreich, P. and Reisenegger, A. 1992 Magnetic field decay in isolated neutron stars. Astrophys. J. 395, 250258.CrossRefGoogle Scholar
Goldstein, M. L. and Roberts, D. A. 1999 Magnetohydrodynamic turbulence in the solar wind. Phys. Plasmas 6, 41544160.CrossRefGoogle Scholar
Hasegawa, A. and Chen, L. 1975 Kinetic process of plasma heating due to Alfvén wave excitation. Phys. Rev. Lett. 35, 370373.CrossRefGoogle Scholar
Hirose, A., Ito, A., Mahajan, S. M. and Ohsaki, S. 2004 Relation between Hall-MHD and the kinetic Alfvén wave. Phys. Lett. A 330, 474480.CrossRefGoogle Scholar
Hori, D. and Miura, H. 2008 Spectrum properties of hall mhd turbulence. Plasma Fusion Res. 3, S1053.CrossRefGoogle Scholar
Howes, G. G. 2006 Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas. Nonlinear Process. Geophys. 16, 219232.CrossRefGoogle Scholar
Howes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E. and Schekochihin, A. A. 2008 A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. (Space Phys.) 113, 5103.CrossRefGoogle Scholar
Howes, G. G. and Quataert, E. 2010 On the interpretation of magnetic helicity signatures in the dissipation range of solar wind turbulence. Astrophys. J. Lett. 709, L49L52.CrossRefGoogle Scholar
Hunana, P., Laveder, D., Passot, T., Sulem, P. L. and Borgogno, D. 2011 Reduction of compressibility and parallel transfer by Landau damping in turbulent magnetized plasmas. Astrophys. J. 743, 128.CrossRefGoogle Scholar
Karimabadi, H. et al. 2013 Coherent structures, intermittent turbulence, and dissipation in high-temperature plasmas. Phys. Plasmas 20 (1), 012 303.CrossRefGoogle Scholar
Kingsep, A. S., Chukbar, K. V. and Yankov, V. V. 1990 Review of Plasma Physics, Vol. 16, New York: Consultant bureau.Google Scholar
Kiyani, K. H., Chapman, S. C., Khotyaintsev, Y. V., Dunlop, M. W. and Sahraoui, F. 2009 Global scale-invariant dissipation in collisionless plasma turbulence. Phys. Rev. Lett. 103 (7), 075 006.CrossRefGoogle ScholarPubMed
Lukin, V. S. 2009 Stationary nontearing inertial scale electron magnetohydrodynamic instability. Phys. Plasmas 16 (12), 122 105.CrossRefGoogle Scholar
Lvov, Y. V., Polzin, K. L. and Tabak, E. G. 2004 Energy spectra of the ocean's internal wave field: theory and observations. Phys. Rev. Lett. 92 (12), 128 501.CrossRefGoogle ScholarPubMed
Lyutikov, M. 2013 Electron magnetohydrodynamics: dynamics and turbulence. Phys. Rev. E 88, 053 103.CrossRefGoogle ScholarPubMed
Mandt, M. E., Denton, R. E. and Drake, J. F. 1994 Transition to whistler mediated magnetic reconnection. Geophys. Res. Lett. 21, 7376.CrossRefGoogle Scholar
Martin, L. N., Dmitruk, P. and Gomez, D. O. 2012 Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic. Phys. Plasmas 19, 052 305.CrossRefGoogle Scholar
Matthaeus, W. H. and Goldstein, M. L. 1982 Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res. 87, 60116028.CrossRefGoogle Scholar
Matthaeus, W. H. et al., 2014, Nonlinear and linear timescales near kinetic scales in solar wind turbulence. Astrophys. J. 790, 155.CrossRefGoogle Scholar
Meyrand, R. and Galtier, S. 2010 A universal law for solar-wind turbulence at electron scales. Astrophys. J. 721, 14211424.CrossRefGoogle Scholar
Meyrand, R. and Galtier, S. 2012 Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence. Phys. Rev. Lett. 109 (19), 194 501.CrossRefGoogle ScholarPubMed
Meyrand, R. and Galtier, S. 2013 Anomalous k −8/3 spectrum in electron magnetohydrodynamic turbulence. Phys. Rev. Lett. 111, 264 501.CrossRefGoogle Scholar
Mininni, P. D., Alexakis, A. and Pouquet, A. 2007 Energy transfer in Hall-MHD turbulence: cascades, backscatter, and dynamo action. J. Plasma Phys. 73, 377401.CrossRefGoogle Scholar
Nazarenko, S., ed. 2011 Wave Turbulence (Lecture Notes in Physics, 825). Berlin: Springer Verlag.Google Scholar
Ng, C. S., Bhattacharjee, A., Germaschewski, K. and Galtier, S. 2003 Anisotropic fluid turbulence in the interstellar medium and solar wind. Phys. Plasmas 10, 19541962.CrossRefGoogle Scholar
Passot, T., Henri, P., Laveder, D. and Sulem, P. L. 2014 Fluid simulations of ion scale plasmas with weakly distorted magnetic field. (submitted).CrossRefGoogle Scholar
Pouquet, A., Frisch, U. and Leorat, J. 1976 Strong MHD helical turbulence and the nonlinear dynamo effect. J. Fluid Mech. 77, 321354.CrossRefGoogle Scholar
Rousculp, C. L. and Stenzel, R. L. 1997 Helicity injection by knotted antennas into electron magnetohydrodynamical plasmas. Phys. Rev. Lett. 79, 837840.CrossRefGoogle Scholar
Rudakov, L., Mithaiwala, M., Ganguli, G. and Crabtree, C. 2011 Linear and nonlinear Landau resonance of kinetic Alfvén waves: consequences for electron distribution and wave spectrum in the solar wind. Phys. Plasmas 18 (1), 012 307.CrossRefGoogle Scholar
Sahraoui, F., Belmont, G. and Goldstein, M. L. 2012 New insight into short-wavelength solar wind fluctuations from Vlasov theory. Astrophys. J. 748, 100.CrossRefGoogle Scholar
Sahraoui, F., Galtier, S. and Belmont, G. 2007 On waves in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 73, 723730.CrossRefGoogle Scholar
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P. and Rezeau, L. 2010 Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105 (13), 131 101.CrossRefGoogle ScholarPubMed
Sahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Rétino, A., Robert, P. and De Patoul, J. 2013 Scaling of the electron dissipation range of solar wind turbulence. Astrophys. J. 777, 15.CrossRefGoogle Scholar
Schekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E. and Tatsuno, T. 2009 Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. Suppl. 182, 310377.CrossRefGoogle Scholar
Sentoku, Y., Mima, K., Kaw, P. and Nishikawa, K. 2003 Anomalous resistivity resulting from MeV-electron transport in overdense plasma. Phys. Rev. Lett. 90 (15), 155 001.CrossRefGoogle ScholarPubMed
Shaikh, D. and Zank, G. P. 2005 Driven dissipative whistler wave turbulence. Phys. Plasmas 12 (12), 122 310.CrossRefGoogle Scholar
Shepherd, L. S. and Cassak, P. A. 2010 Comparison of secondary islands in collisional reconnection to Hall reconnection. Phys. Rev. Lett. 105 (1), 015 004.CrossRefGoogle ScholarPubMed
Smith, C. W., Hamilton, K., Vasquez, B. J. and Leamon, R. J. 2006 Dependence of the dissipation range spectrum of interplanetary magnetic fluctuations on the rate of energy cascade. Astrophys. J. Lett. 645, L85L88.CrossRefGoogle Scholar
Stenzel, R. L. and Urrutia, J. M. 1996 Helicity and transport in electron MHD heat pulses. Phys. Rev. Lett. 76, 14691472.CrossRefGoogle ScholarPubMed
Stenzel, R. L., Urrutia, J. M. and Rousculp, C. L. 1995 Helicities of electron magnetohydrodynamic currents and fields in plasmas. Phys. Rev. Lett. 74, 702705.CrossRefGoogle ScholarPubMed
Tessein, J. A., Smith, C. W., MacBride, B. T., Matthaeus, W. H., Forman, M. A. and Borovsky, J. E. 2009 Spectral indices for multi-dimensional interplanetary turbulence at 1 AU. Astrophys. J. 692, 684693.CrossRefGoogle Scholar
Voitenko, Y. M. 1998 Three-wave coupling and weak turbulence of kinetic Alfvén waves. J. Plasma Phys. 60, 515527.CrossRefGoogle Scholar
Zakharov, V. E., L'Vov, V. S. and Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I: Wave Turbulence (Springer Series in Nonlinear Dynamics). Berlin: Springer.CrossRefGoogle Scholar