Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T17:23:51.487Z Has data issue: false hasContentIssue false

Exact analytical calculation and numerical modelling by finite-difference time-domain method of the transient transmission of electromagnetic waves through cold plasmas

Published online by Cambridge University Press:  09 June 2020

Ivan V. Pavlenko*
Affiliation:
Department of Physics and Technology, V.N.Karazin Kharkiv National University, Svobody Sq.4, 61022, Kharkiv, Ukraine
Igor O. Girka
Affiliation:
Department of Physics and Technology, V.N.Karazin Kharkiv National University, Svobody Sq.4, 61022, Kharkiv, Ukraine
Oleksandr V. Trush
Affiliation:
Department of Physics and Technology, V.N.Karazin Kharkiv National University, Svobody Sq.4, 61022, Kharkiv, Ukraine
Daria O. Melnyk
Affiliation:
Department of Physics and Technology, V.N.Karazin Kharkiv National University, Svobody Sq.4, 61022, Kharkiv, Ukraine
*
Email address for correspondence: ipavlenko@karazin.ua

Abstract

The transient transmission of an electromagnetic wave through cold, unmagnetized and collisionless plasmas is described both analytically and numerically for its normal incidence from vacuum upon a plasma half-space. Exact formulas for the electromagnetic field are written in integral forms, which are convenient for approximate analysis and comparison with the results of direct numerical simulations. The time when the plasma particle oscillations become self-consistent with the electromagnetic field can be calculated from the simplified formulas for an arbitrary distance from the plasma–vacuum interface. Special attention is paid to the formation of the electrostatic oscillation in the case when the frequency of the incident wave is equal to the plasma frequency. The amplitudes of the vanishing magnetic field and the forming electrostatic oscillation are calculated as functions of time and the distance from the plasma–vacuum interface. The formation of the electrostatic oscillation is a slow process because the electromagnetic power penetrating into the plasma tends to zero with time. The transmitted plasma electromagnetic field is also simulated by the a finite-difference time-domain (FDTD) code. The difficulties of the numerical simulation of the quasi-electrostatic field are discussed. The analytical results can be used for the validation of the FDTD codes for plasma waves.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Budak, B. M., Samarskii, A. A. & Tikhonov, A. N. 1964 A Collection of Problems on Mathematical Physics. Pergamon Press.Google Scholar
Cartwright, N. A. & Oughstun, K. E. 2009 Ultrawideband pulse propagation through a homogeneous, isotropic, lossy plasma. Radio Sci. 44 (4), RS4013.CrossRefGoogle Scholar
Case, C. T. 1964 Transient reflection and transmission of a plane wave normally incident upon a semi-infinite anisotropic plasma. In Physical Sciences Research Papers 33 AFCRL-64-550. AF Cambridge Research Lab.Google Scholar
Chen, F. F. 2012 Introduction to Plasma Physics. Springer.Google Scholar
Cummer, S. A. 1997 An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy. IEEE Trans. Antennas Propag. 45 (3), 392400.CrossRefGoogle Scholar
Felsen, L. B. 1976 Transient Electromagnetic Fields, Topics in Applied Physics, vol. 10. Springer.CrossRefGoogle Scholar
Gamliel, E. 2017 Direct integration 3-D FDTD method for single-species cold magnetized plasma. IEEE Trans. Antennas Propag. 65 (1), 295308.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2007 Table of Integrals, Series, and Products. Elsevier Academic Press.Google Scholar
Haskell, R. E. & Case, C. T. 1967 Transient signal propagation in lossless, isotropic plasmas. IEEE Trans. Antennas Propag. 15 (3), 458464.CrossRefGoogle Scholar
Jackson, J. D. 1998 Classical Electrodynamics. Wiley.Google Scholar
Kalluri, D. K. 1988 On reflection from a suddenly created plasma half-space: transient solution. IEEE Trans. Plasma Sci. 16 (1), 1116.Google Scholar
Kalluri, D. K. 2018 Principles of Electromagnetic Waves and Materials. CRC Press.Google Scholar
Krall, N. A. & Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill.CrossRefGoogle Scholar
Kylychbekov, S., Song, H. S., Kwon, K. B., Ra, O., Yoon, E. S., Chung, M., Yu, K., Yoffe, S. R., Ersfeld, B., Jaroszynski, D. A. et al. 2020 Reconstraction of plasma density profiles by measuring spectra of radiation emitted from oscillating plasma dipole. Plasma Sources Sci. Technol. 29 (2), 025018.CrossRefGoogle Scholar
Lam, D.-H. 1974 A difference equation for transient signal propagation in cold homogeneous lossy isotropic plasmas. Proc. IEEE 62 (12), 17081709.Google Scholar
Luebbers, R. J., Hunsberger, F. & Kunz, K. S. 1991 A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma. IEEE Trans. Antennas Propag. 39 (1), 2934.CrossRefGoogle Scholar
Orfanidis, S. J. 2016 Electromagnetic Waves and Antennas. Rutgers University.Google Scholar
Oughstun, K. E. 1991 Pulse propagation in a linear, causally dispersive medium. Proc. IEEE 79 (10), 13791390.CrossRefGoogle Scholar
Oughstun, K. E. 2009 Electromagnetic and Optical Pulse Propagation 2: Temporal Pulse Dynamics in Dispersive, Attenuative Media, Springer Series in Optical Sciences, vol. 144. Springer.CrossRefGoogle Scholar
Pavlenko, I. V., Girka, I. O., Trush, O. V., Melnyk, D. O. & Velizhanina, Y. S. 2019 Plasma transient processes and plane-wave formation in simulations by FDTD method. IEEE Trans. Antennas Propag. 67 (11), 69576964.CrossRefGoogle Scholar
Schmitt, H. J. 1964 Plasma diagnostics with short electromagnetic pulses. IEEE Trans. Nuclear Sci. 11 (1), 125136.CrossRefGoogle Scholar
Schmitt, H. J. 1965 Dispersion of pulsed electromagnetic waves in a plasma (correspondence). IEEE Trans. Microwave Theory Techniques 13 (4), 472473.CrossRefGoogle Scholar
Taflove, A. & Hagness, S. C. 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House.Google Scholar
Thoma, C., Rose, D. V., Miller, C. L., Clark, R. E. & Hughes, T. P. 2009 Electromagnetic wave propagation through an overdense magnetized collisional plasma layer. J. Appl. Phys. 106 (4), 043301.CrossRefGoogle Scholar
Tikhonov, A. N. & Samarskii, A. A. 2011 Equations of Mathematical Physics. Dover Publications.Google Scholar
Wait, J. R. 1969 Reflection of a plane transient electromagnetic wave from a cold lossless plasma slab. Radio Sci. 4 (4), 401405.CrossRefGoogle Scholar
Wait, J. R. 1970 Electromagnetic Waves in Stratified Media. Pergamon Press.Google Scholar
Watson, G. N. 1944 A Treatise on the Theory of Bessel Functions. Cambridge University Press.Google Scholar
Yee, K. N. 1966 Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14 (3), 302307.Google Scholar
Young, J. L. 1996 A higher order FDTD method for EM propagation in a collisionless cold plasma. IEEE Trans. Antennas Propag. 44 (9), 12831289.CrossRefGoogle Scholar
Yuan, C. X., Zhou, Z. X. & Sun, H. G. 2010 Reflection properties of electromagnetic wave in a bounded plasma slab. IEEE Trans. Plasma Sci. 38 (12), 33483355.Google Scholar
Zablocky, P. G. & Engheta, N. 1993 Transients in chiral media with single-resonance dispersion. J. Opt. Soc. Am. A 10 (4), 740758.CrossRefGoogle Scholar
Zheng, L., Zhao, Q., Liu, S., Xing, X. & Chen, Y. 2014 Theoretical and experimental studies of terahertz wave propagation in unmagnetized plasma. J. Infrared Millimeter Terahertz Waves 35 (2), 187197.CrossRefGoogle Scholar