Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T19:24:29.429Z Has data issue: false hasContentIssue false

Explicitly covariant dispersion relations and self-induced transparency

Published online by Cambridge University Press:  05 January 2017

S. M. Mahajan*
Affiliation:
Institute for Fusion Studies, The University of Texas at Austin, Texas 78712, USA
Felipe A. Asenjo*
Affiliation:
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago 7941169, Chile
*
Email addresses for correspondence: mahajan@mail.utexas.edu, felipe.asenjo@uai.cl
Email addresses for correspondence: mahajan@mail.utexas.edu, felipe.asenjo@uai.cl

Abstract

Explicitly covariant dispersion relations for a variety of plasma waves in unmagnetized and magnetized plasmas are derived in a systematic manner from a fully covariant plasma formulation. One needs to invoke relatively little known invariant combinations constructed from the ambient electromagnetic fields and the wave vector to accomplish the program. The implication of this work applied to the self-induced transparency effect is discussed. Some problems arising from the inconsistent use of relativity are pointed out.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, A. & Wiersma, J. 2007 The weibel instability in relativistic plasmas. Astron. Astrophys. 475, 118.CrossRefGoogle Scholar
Akhiezer, A. I. & Polovin, R. V. 1956 Theory of wave motion of an electron plasma. Sov. Phys. JETP 3, 696705.Google Scholar
Asenjo, F. A., Muñoz, V., Valdivia, J. A. & Mahajan, S. M. 2011 A hydrodynamical model for relativistic spin quantum plasmas. Phys. Plasmas 18, 012107.CrossRefGoogle Scholar
Bialynicki-Birula, I., Górnicki, P. & Rafelski, J. 1991 Phase-space structure of the dirac vacuum. Phys. Rev. D 44, 18251835.Google ScholarPubMed
Cairns, R. A., Rau, B. & Airila, M. 2000 Enhanced transmission of laser light through thin slabs of overdense plasmas. Phys. Plasmas 7, 37363742.CrossRefGoogle Scholar
Cattani, F., Kim, A., Anderson, D. & Lisak, M. 2000 Threshold of induced transparency in the relativistic interaction of an electromagnetic wave with overdense plasmas. Phys. Rev. E 62, 12341237.CrossRefGoogle ScholarPubMed
Eliasson, B. & Shukla, P. K. 2011 Nonlinear propagation of light in dirac matter. Phys. Rev. E 84, 036401.CrossRefGoogle ScholarPubMed
Elsässer, K. & Pope, S. 1997 Plasma equations in general relativity. Phys. Plasmas 4, 23482356.CrossRefGoogle Scholar
Emerin, V. I., Korzhimanov, A. V. & Kim, A. V. 2010 Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: why it occurs and its use for ultrashort electron bunch generation. Phys. Plasmas 17, 043102.Google Scholar
Gedalin, M. & Melrose, D. B. 2001 Waves in strongly magnetized relativistic plasmas: generally covariant approach. Phys. Rev. E 64, 027401.CrossRefGoogle ScholarPubMed
Gedalin, M. & Oiberman, I. 1995 Generally covariant relativistic anisotropic magnetohydrodynamics. Phys. Rev. E 51, 49014907.CrossRefGoogle ScholarPubMed
Giulietti, A., Barbini, A., Chessa, P., Giulietti, D., Gizzi, L. A. & Teychenné, D. 1998 High intensity 30 femtosecond laser pulse interaction with thin foils. AIP Conf. Proc. 426, 253263.CrossRefGoogle Scholar
Giulietti, D., Gizzi, L. A., Giulietti, A., Macchi, A., Teychenné, D., Chessa, P., Rousse, A., Cheriaux, G., Chambaret, J. P. & Darpentigny, G. 1997 Observation of solid-density laminar plasma transparency to intense 30 femtosecond laser pulses. Phys. Rev. Lett. 79, 31943197.CrossRefGoogle Scholar
Goloviznin, V. V. & Schep, T. J. 1999 On self-induced transparency in laser–plasma interactions. JETP Lett. 70, 450455.CrossRefGoogle Scholar
Goloviznin, V. V. & Schep, T. J. 2000 Self-induced transparency and self-induced opacity in laser–plasma interactions. Phys. Plasmas 7, 15641571.CrossRefGoogle Scholar
Greiner, W., Neise, L. & Stöcker, H. 1995 Thermodynamics and Statistical Mechanics. Springer.Google Scholar
Guérin, S., Laval, G., Mora, P., Adam, J. C. & Herón, A. 1995 Modulational and raman instabilities in the relativistic regime. Phys. Plasmas 2, 28072814.CrossRefGoogle Scholar
Guérin, S., Mora, P., Adam, J. C., Heron, A. & Laval, G. 1996 Propagation of ultraintense laser pulses through overdense plasma layers. Phys. Plasmas 3, 26932701.CrossRefGoogle Scholar
Hakim, R. & Heyvaerts, J. 1978 Covariant wigner function approach for relativistic quantum plasmas. Phys. Rev. A 18, 12501260.CrossRefGoogle Scholar
Hakim, R. & Heyvaerts, J. 1980 Excitation spectrum of the relativistic quantum plasma. J. Phys. A: Math. Gen. 13, 2001.CrossRefGoogle Scholar
Hayes, L. M. & Melrose, D. B. 1984 Dispersion in a relativistic quantum electron gas. I. General distribution functions. Austral. J. Phys. 37, 615637.CrossRefGoogle Scholar
Kaw, P. & Dawson, J. 1970 Relativistic nonlinear propagation of laser beams in cold overdense plasmas. Phys. Fluids 13, 472481.CrossRefGoogle Scholar
Lefebvre, E. & Bonnaud, G. 1995 Transparency/opacity of a solid target illuminated by an ultrahigh-intensity laser pulse. Phys. Rev. Lett. 74, 20022005.CrossRefGoogle ScholarPubMed
Mahajan, S. M. 2003 Temperature-transformed ‘minimal coupling’: magnetofluid unification. Phys. Rev. Lett. 90, 035001.CrossRefGoogle ScholarPubMed
Mahajan, S. M. & Asenjo, F. A. 2016 A statistical model for relativistic quantum fluids interacting with an intense electromagnetic wave. Phys. Plasmas 23, 056301.CrossRefGoogle Scholar
Marklund, M., Dunsby, P. K. S., Betschart, G., Servin, M. & Tsagas, C. G. 2003 Charged multifluids in general relativity. Class. Quant. Grav. 20, 1823.CrossRefGoogle Scholar
Melrose, D. 2008 Quantum plasmadynamics: unmagnetized plasmas. In Lecture Notes in Physics, 735. Springer.Google Scholar
Melrose, D. B. 1973 A covariant formulation of wave dispersion. Plasma Phys. 15, 99.CrossRefGoogle Scholar
Melrose, D. B. 1982 Covariant description of dispersion in a relativistic thermal electron gas. Austral. J. Phys. 35, 4152.CrossRefGoogle Scholar
Melrose, D. B. 2000 Wave dispersion in highly relativistic plasma. Phys. Scr. T84, 7.CrossRefGoogle Scholar
Melrose, D. B. 2005 Resonances and dispersion in relativistic plasmas. Phys. Lett. A 347, 103113.CrossRefGoogle Scholar
Melrose, D. B., Weise, J. I. & McOrist, J. 2006 Relativistic quantum plasma dispersion functions. J. Phys. A: Math. Gen. 39, 8727.CrossRefGoogle Scholar
Mendonça, J. T. 2011 Wave kinetics of relativistic quantum plasmas. Phys. Plasmas 18, 062101.CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S. & Wheeler, J. A. 1973 Gravitation. W. H. Freeman and Co.Google Scholar
Mourou, G. A., Tajima, T. & Bulanov, S. V. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Pukhov, A., Sheng, Z.-M. & Meyer-ter Vehn, J. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6, 28472854.CrossRefGoogle Scholar
Roth, G. 1969 Acta Phys. Acad. Sci. Hungar. 27, 309.CrossRefGoogle Scholar
Sivak, H. D. 1985 Fluctuations in the relativistic quantum plasma. Ann. Phys. 159, 351410.CrossRefGoogle Scholar
Tajima, T. & Shibata, K. 1997 Plasma Astrophysics. Addison-Wesley.Google Scholar
Ter Haar, D. & Wergeland, H. 1971 Thermodynamics and statistical mechanics in the special theory of relativity. Phys. Rep. 1, 3154.CrossRefGoogle Scholar
Umstadter, D. 2013 Relativistic laser–plasma interactions. J. Phys. D: Appl. Phys. 36, R151R165.CrossRefGoogle Scholar