Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T03:26:33.589Z Has data issue: false hasContentIssue false

Focusing of a dark hollow Gaussian electromagnetic beam in a magnetoplasma

Published online by Cambridge University Press:  23 March 2009

MAHENDRA SINGH SODHA
Affiliation:
Disha Academy of Research and Education, Disha Crown, Katchna Road, Shankarnagar, Raipur 492 007, India (msodha@rediffmail.com)
S. K. MISHRA
Affiliation:
Ramanna Fellowship Program, Department of Education Building, Lucknow University, Lucknow 226 007, India
SHIKHA MISRA
Affiliation:
Ramanna Fellowship Program, Department of Education Building, Lucknow University, Lucknow 226 007, India

Abstract

This paper presents an analysis and subsequent discussion of the self focusing of a dark hollow Gaussian electromagnetic beam (HGB) in a magnetoplasma, considering ponderomotive and collisional nonlinearities. A paraxial-like approach, in which the relevant parameters are expanded in terms of radial distance from the maximum of the irradiance rather than that from the axis, has been adopted to analyze the propagation of the HGB. The nature of self focusing is highlighted through the critical curves as a plot of dimensionless radius versus power of the beam. The effect of the magnetic field and the nature of the nonlinearity on self focusing of various order HGBs has also been explored.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Chiao, R. Y., Garmire, E. and Townes, C. H. 1964 Self-trapping of optical beams. Phys. Rev. Lett. 13, 479482.CrossRefGoogle Scholar
[2]Kelley, P. L. 1965 Self-focusing of laser beams and stimulated Raman gain in liquids. Phys. Rev. Lett. 15, 10101012.Google Scholar
[3]Sodha, M. S., Tripathi, V. K. and Ghatak, A. K. 1976. Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.CrossRefGoogle Scholar
[4]Hora, H. 1991 Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
[5]Karlson, M. 1992 Optical beams in saturable self focusing media. Phys. Rev. A 46, 27262734.CrossRefGoogle Scholar
[6]Sprangle, P. and Esarey, E. 1991. Stimulated backscattered harmonic generation from intense laser interactions with beams and plasmas. Phys. Rev. Lett. 67, 20212024.CrossRefGoogle ScholarPubMed
[7]Milchberg, H. M., Durfee III, C. G. and Mcllrath, T. J. 1995 High-order frequency conversion in the plasma waveguide. Phys. Rev. Lett. 75, 24942497.CrossRefGoogle ScholarPubMed
[8]Eder, D. C. et al. 1994 Tabletop x-ray lasers. Phys. Plasmas 1, 17441752.CrossRefGoogle Scholar
[9]Tabak, M., Hammer, J., Glinisky, M. E., Kruer, W. L., Wilks, S. C., Woodworth, J., Campbell, E. M., Perry, M. D. and Mason, R. J. 1994 Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
[10]Sprangle, P., Esarey, E., Ting, A. and Joyce, G. 1988 Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53, 21462148.CrossRefGoogle Scholar
[11]Umstadter, D., Chen, S. Y., Maksimchuk, A., Mourou, G. and Wagner, R. 1996 Nonlinear optics in relativistic plasmas and laser wakefield acceleration of electrons. Science 273, 472475.CrossRefGoogle Scholar
[12]Akhmanov, S. A., Sukhorukov, A. P. and Khokhlov, R. V. 1968 Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
[13]Hora, H. 1969 Self focusing of laser beams in a plasma by ponderomotive forces. Z. Phys. 226, 156159.CrossRefGoogle Scholar
[14]Sodha, M. S., Ghatak, A. K. and Tripathi, V. K. 1974 Self Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.Google Scholar
[15]Hora, H. 1975 Theory of relativistic self focusing of laser radiations in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
[16]Osman, F., Castillo, R. and Hora, H. 1999 Relativistic and ponderomotive self-focusing at laser plasma interaction. J. Plasma Phys. 61, 263273.CrossRefGoogle Scholar
[17]Sharma, A., Prakash, G., Verma, M. P. and Sodha, M. S. 2003 Three regimes of intense laser propagation in plasmas. Phys. Plasmas 10, 40794084.CrossRefGoogle Scholar
[18]Sharma, A., Verma, M. P. and Sodha, M. S. 2004 Self focusing of electromagnetic beams in a collisional plasma with nonlinear absorption. Phys. Plasmas 11, 42754279.CrossRefGoogle Scholar
[19]Ginzburg, V. L. 1964 The Propagation of Electromagnetic Waves in Plasmas. New York: Pergamon Press.Google Scholar
[20]Sodha, M. S., Mittal, R. S., Kumar, S. and Tripathi, V. K. 1974 Self focusing of electromagnetic waves in a magnetoplasma. Opto Electronics 6, 167180.CrossRefGoogle Scholar
[21]Sodha, M. S., Khanna, R. K. and Tripathi, V. K. 1974 The self focusing of electromagnetic beams in strongly ionized magnetoplasma. J. Phys. D 7, 21882197.Google Scholar
[22]Sodha, M. S., Sharma, R. P., Kumar, S. and Tripathi, V. K. 1976 Cross focusing of extraordinary and ordinary modes in a magnetoplasma. Opt. Acta 23, 305319.CrossRefGoogle Scholar
[23]Sodha, M. S. and Patel, L. A. 1980 Self focusing of a laser beam in a magnetoplasma. Opt. Acta 27, 783797.CrossRefGoogle Scholar
[24]Sodha, M. S., Mishra, S. K. and Agarwal, S. K. 2007 Self focusing and cross focusing of Gaussian electromagnetic beams in a fully ionized collisional plasma. Phys. Plasmas 14, 1123021–8.CrossRefGoogle Scholar
[25]Sharma, A., Kourakis, I. and Sodha, M. S. 2008 Propagation regimes for an electromagnetic beam in magnetized plasma. Phys. Plasmas 15, 1031011–7.CrossRefGoogle Scholar
[26]Sodha, M. S. and Sharma, A. 2008 Self focusing of electromagnetic beams in ionosphere considering earth's magnetic field. J. Plasma Phys. 74, 473491.CrossRefGoogle Scholar
[27]Nayyar, V. P. 1986 Non-linear propagation of a mixture of degenerate modes of a laser cavity. J. Opt. Soc. Am. B 3, 711714.CrossRefGoogle Scholar
[28]Grow, T. D., Ishaaya, A. A., Vuong, L. T., Gaeta, A. L., Gavish, N. and Fibich, G. 2006 Collapse dynamics of super-Gaussian beams. Opt. Express 14, 54685475.CrossRefGoogle ScholarPubMed
[29]Fibich, G. 2008 Some modern aspects of self-focusing theory. In: Self-focusing: Past and Present (ed. Boyd, R. W., Lukishova, S. G. and Shen, Y. R.). Springer-Verlag, Berlin, ch. 17.Google Scholar
[30]Karlsson, M. 1992 Optical beams in saturable self focusing media. Phys. Rev. A 46, 27262734.CrossRefGoogle ScholarPubMed
[31]Johannisson, P., Anderson, D., Lisak, M. and Marklund, M. 2003 Nonlinear bessel beams. Opt. Commun. 222, 107115.CrossRefGoogle Scholar
[32]Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y. and Sasada, H. 1997 Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 47134716.CrossRefGoogle Scholar
[33]Xu, X., Wang, Y. and Jhe, W. 2002 Theory of atom guidance in a hollow laser beam: dressed atom approach. J. Opt. Soc. Am. B 17, 10391050.CrossRefGoogle Scholar
[34]Cai, Y., Lu, X. and Lin, Q. 2003 Hollow Gaussian beams and their propagation properties. Opt. Lett. 28, 10841086.CrossRefGoogle ScholarPubMed
[35]York, A. G., Milchberg, H. M., Palastro, J. P. and Antonsen, T. M. 2008 Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 195001–4.CrossRefGoogle Scholar
[36]Zhu, K., Tang, H., Sun, X., Wang, X. and Liu, T. 2002 Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams. Opt. Commun. 207, 2934.CrossRefGoogle Scholar
[37]Ganic, D., Gan, X. and Gu, M. 2003 Focusing of doughnut laser beams by high numerical aperture objective in free space. Opt. Express 11, 27472752.CrossRefGoogle ScholarPubMed
[38]Cai, Y. and Lin, Q. 2004 Hollow elliptical Gaussian beam and its propagation through aligned and misaligned paraxial optical systems. J. Opt. Soc. Am. A 21, 10581065.CrossRefGoogle ScholarPubMed
[39]Mei, Z. and Zhao, D. 2005 Controllable dark hollow beams and their propagation characteristics. J. Opt. Soc. Am. A 22, 18981902.CrossRefGoogle ScholarPubMed
[40]Herman, R. M. and Wiggins, T. A. 1991 Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932942.CrossRefGoogle Scholar
[41]Wang, X. and Littman, M. G. 1993 Laser cavity for generation of variable radius rings of light. Opt. Lett. 18, 767770.CrossRefGoogle ScholarPubMed
[42]Cai, Y. and Zhang, L. 2006 Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 13531367.CrossRefGoogle Scholar
[43]Gao, Z. and Lu, B. 2006 Non-paraxial dark hollow Gaussian beams. Chin. Phys. Lett. 23, 106109.Google Scholar
[44]Mei, Z. and Zhao, D. 2006 Controllable elliptical dark hollow beams. J. Opt. Soc. Am. A 23, 919925.CrossRefGoogle ScholarPubMed
[45]Sodha, M. S., Nayyar, V. P. and Tripathi, V. K. 1974 Asymmetric focusing of the laser beam in a TEM01 doughnut mode in dielectrics. J. Opt. Soc. Am. 64, 941943.CrossRefGoogle Scholar
[46]Sharma, A., Verma, M. P., Sodha, M. S. and Tripathi, V. K. 2005 Self focusing of TEM10 mode laser beam in a plasma. Indian J. Phys. 79, 393399.Google Scholar
[47]Prakash, G., Sharma, A., Verma, M. P. and Sodha, M. S. 2006 Proc. Natl. Acad. Sci. India 76(A) III, 257263.Google Scholar
[48]Feit, M. D. and Fleck, J. A. Jr., 1988 Beam non-paraxiality, filament formation and beam breakup in the self focusing of optical beams. Opt. Soc. Am. B 5, 633640.CrossRefGoogle Scholar
[49]Vidal, F. and Johnston, T. W. 1996 Electromagnetic beam breakup: multi filaments, single beam equilibria and radiation. Phys. Rev. Lett. 77, 12821285.CrossRefGoogle Scholar
[50]Shkarofsky, I. P., Johnston, T. W. and Bachynski, M. P. 1966 The Particle Kinetics of Plasmas. New York: Addison-Wesley.Google Scholar