Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:17:05.988Z Has data issue: false hasContentIssue false

Free electron laser in the magnetically dominated regime: simulations with the ONEDFEL code

Published online by Cambridge University Press:  09 January 2025

Maxim Lyutikov*
Affiliation:
Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907-2036, USA
Henry Freund
Affiliation:
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
*
Email address for correspondence: lyutikov@purdue.edu

Abstract

Using the ONEDFEL code we perform free electron laser simulations in the astrophysically important guide-field dominated regime. For wigglers’ (Alfvén waves) wavelengths of tens of kilometres and beam Lorentz factor ${\sim }10^3$, the resulting coherently emitted waves are in the centimetre range. Our simulations show a growth of the wave intensity over fourteen orders of magnitude, over the astrophysically relevant scale of approximately a few kilometres. The signal grows from noise (unseeded). The resulting spectrum shows fine spectral substructures, reminiscent of those observed in fast radio bursts.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bochenek, C.D., Ravi, V., Belov, K.V., Hallinan, G., Kocz, J., Kulkarni, S.R. & McKenna, D.L. 2020 A fast radio burst associated with a Galactic magnetar. Nature 587, 59.CrossRefGoogle ScholarPubMed
Bonifacio, R., Casagrande, F., Cerchioni, G., Salvo Souza, L., Pierini, P. & Piovella, N. 1990 Physics of the high-gain FEL and superradiance. Nuovo Cimento 13, 1.Google Scholar
CHIME/FRB Collaboration, Andersen, B.C., Bandura, K.M., Bhardwaj, M., Bij, A., Boyce, M.M., Boyle, P.J., Brar, C., Cassanelli, T., Chawla, P., et al. 2020 A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54.Google Scholar
Eilek, J.A. & Hankins, T.H. 2016 Radio emission physics in the Crab pulsar. J. Plasma Phys. 82 (3), eid635820302.CrossRefGoogle Scholar
Freund, H.P. & Antonsen, T.M. 2024 Principles of Free-Electron Lasers, 4th edn. Springer Nature.CrossRefGoogle Scholar
Jackson, J.D. 1975 Classical Electrodynamics, Provided by the SAO/NASA Astrophysics Data System. https://ui.adsabs.harvard.edu/abs/1975clel.book.....J.Google Scholar
Kennel, C.F. & Coroniti, F.V. 1984 Confinement of the Crab pulsar's wind by its supernova remnant. Astrophys. J. 283, 694.CrossRefGoogle Scholar
Li, C.K., Lin, L., Xiong, S.L., Ge, M.Y., Li, X.B., Li, T.P., Lu, F.J., Zhang, S.N., Tuo, Y.L., Nang, Y., et al. 2021 HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428. Nat. Astron 5, 378384.CrossRefGoogle Scholar
Lyubarsky, Y. 2008 Pulsar emission mechanisms. In 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More (ed. C. Bassa, Z. Wang, A. Cumming & V.M. Kaspi), American Institute of Physics Conference Series, vol. 983, pp. 29–37. AIP. https://ui.adsabs.harvard.edu/abs/2008AIPC..983...29LCrossRefGoogle Scholar
Lyutikov, M. 2021 Coherent Emission in Pulsars, Magnetars, and Fast Radio Bursts: Reconnection-driven Free Electron Laser. Astrophys. J. 922, eid166.CrossRefGoogle Scholar
Lyutikov, M., Burzawa, L. & Popov, S.B. 2016 Fast radio bursts as giant pulses from young rapidly rotating pulsars. Mon. Not. R. Astron. Soc. 462, 941.CrossRefGoogle Scholar
Melrose, D.B. 2000 The Status of Pulsar Emission Theory. In IAU Colloq. 177: Pulsar Astronomy – 2000 and Beyond (ed. M. Kramer, N. Wex & R. Wielebinski), Astronomical Society of the Pacific Conference Series, vol. 202, p. 721. https://ui.adsabs.harvard.edu/abs/2000ASPC..202..721MCrossRefGoogle Scholar
Mereghetti, S., Savchenko, V., Ferrigno, C., Götz, D., Rigoselli, M., Tiengo, A., Bazzano, A., Bozzo, E., Coleiro, A., Courvoisier, T.J.L., et al. 2020 INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154. Astrophys. J. Lett. 898, eidL29.CrossRefGoogle Scholar
Michilli, D., Seymour, A., Hessels, J.W.T., Spitler, L.G., Gajjar, V., Archibald, A.M., Bower, G.C., Chatterjee, S., Cordes, J.M., Gourdji, K., et al. 2018 An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182.CrossRefGoogle ScholarPubMed
Ravi, V., Shannon, R.M., Bailes, M., Bannister, K., Bhandari, S., Bhat, N.D.R., Burke-Spolaor, S., Caleb, M., Flynn, C., Jameson, A., et al. 2016 The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249.CrossRefGoogle ScholarPubMed
Ridnaia, A., Svinkin, D., Frederiks, D., Bykov, A., Popov, S., Aptekar, R., Golenetskii, S., Lysenko, A., Tsvetkova, A., Ulanov, M., et al. 2021 A peculiar hard X-ray counterpart of a Galactic fast radio burst. Nat. Astron. 5, 372.CrossRefGoogle Scholar
Saldin, E.L., Schneidmiller, E.A. & Yurkov, M.V. 1995 The physics of free electron lasers. An introduction. Phys. Rep. 260, 187.CrossRefGoogle Scholar
Sharma, P., Barkov, M.V. & Lyutikov, M. 2023 Relativistic coronal mass ejections from magnetars. Mon. Not. R. Astron. Soc. 524, 6024.CrossRefGoogle Scholar