Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T14:13:16.632Z Has data issue: false hasContentIssue false

Generation of zonal flow and magnetic field in the ionospheric E-layer

Published online by Cambridge University Press:  13 July 2015

L. Z. Kahlon*
Affiliation:
Department of Physics, Forman Christian College, Ferozpur Road, Lahore 54600, Pakistan
T. D. Kaladze
Affiliation:
I. Vekua Institute of Applied Mathematics, Tbilisi State University, 0186, Tbilisi, Georgia
*
Email address for correspondence: lailakahlon192@gmail.com

Abstract

We review the generation of zonal flow and magnetic field by coupled electromagnetic ultra-low-frequency waves in the Earth’s ionospheric E-layer. It is shown that, under typical ionospheric E-layer conditions, different planetary low-frequency waves can couple with each other. Propagation of coupled internal-gravity–Alfvén, coupled Rossby–Khantadze and coupled Rossby–Alfvén–Khantadze waves is revealed and studied. A set of appropriate equations describing the nonlinear interaction of such waves with sheared zonal flow is derived. The conclusion on the instability of short-wavelength turbulence of such coupled waves with respect to the excitation of low-frequency and large-scale perturbation of the sheared zonal flow and sheared magnetic field is deduced. The nonlinear mechanism of the instability is based on the parametric triple interaction of finite-amplitude coupled waves leading to the inverse energy cascade towards longer wavelength. The possibility of generation of an intense mean magnetic field is shown. Obtained growth rates are discussed for each case of the considered coupled waves.

Type
Research Article
Copyright
© Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alperovich, L. S. & Fedorov, E. N. 2007 Hydrodynamic Waves in the Magnetosphere and the Ionosphere. Springer.Google Scholar
Bauer, T. M., Baumjohann, W., Treumann, R. A., Sckopke, N. & Lühr, H. 1995 Low frequency waves in the near-earth plasma sheet. J. Geophys. Res. 100A, 96059617.Google Scholar
Burmaka, V. P. & Chernogor, L. F. 2004 Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of nonstationary natural processes. Geomagn. Aeron. 44 (3), 518 (in Russian).Google Scholar
Burmaka, V. P., Lysenko, V. N., Chernogor, L. F. & Chernyak, Yu. V. 2006 Wave-like processes in the ionospheric $F$ region that accompanied rocket launches from the Baikonur site. Geomag. Aeron. 46, 742759.CrossRefGoogle Scholar
Burmaka, V. P., Taran, L. F. & Chernogor, L. F. 2005 Results of investigations of the wave disturbances in the ionosphere by noncoherent scattering. Adv. Mod. Radiophys. 3, 4 (in Russian).Google Scholar
Cavalieri, D. J. 1976 Traveling planetary-scale waves in the E-region. J. Atmos. Terr. Phys. 38, 965974.Google Scholar
Cavalieri, D. J., Deland, R. J., Poterna, J. A. & Gavin, R. F. 1974 The correlation of VLF propagation variations with atmospheric planetary-scale waves. J. Atmos. Terr. Phys. 36, 561.CrossRefGoogle Scholar
Cheng, K. & Huang, Y.-N. 1991 Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res. 97 (A11), 16995.Google Scholar
Fagundes, P. R., Pillat, V. G., Bolzan, M. J., Sahai, Y., Becker-Guedes, F., Abalde, J. R., Aranha, S. L. & Bittencourt, J. A. 2005 Observations of $F$ layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region. J. Geophys. Res. 110, A12302.Google Scholar
Forbes, J. M. & Leveroni, S. 1992 Quasi 16-day oscillation in the ionosphere. Geophys. Res. Lett. 19, 981984.CrossRefGoogle Scholar
Haykowicz, L. A. 1999 Global onset and propagation of large-scale traveling ionospheric disturbances as a result of the great storm of 13 March 1989. Planet. Space Sci. 39, 583593.Google Scholar
Hirooka, T. & Hirota, I. 1985 Normal mode Rossby waves observed in the upper stratosphere. Part II: second antisymmetric and symmetric modes of zonal wavenumbers 1 and 2. J. Atmos. Sci. 42, 536548.Google Scholar
Kaladze, T. D., Horton, W., Kahlon, L. Z., Pokhotelov, O. & Onishchenko, O. 2013a Generation of zonal flow and magnetic field by coupled Rossby–Alfvén–Khantadze waves in the Earth’s ionospheric E-layer. Phys. Scr. 88, 065501.Google Scholar
Kaladze, T. D., Horton, W., Kahlon, L. Z., Pokhotelov, O. & Onishchenko, O. 2013b Zonal flows and magnetic fields driven by large-amplitude Rossby–Alfvén–Khantadze waves in the E-layer ionosphere. J. Geophys. Res. 118, 112.Google Scholar
Kaladze, T. D., Kahlon, L. Z. & Tsamalashvili, L. V. 2012a Excitation of zonal flow and magnetic field by Rossby–Khantadze electromagnetic planetary waves in the ionospheric E-layer. Phys. Plasmas 19, 022902.CrossRefGoogle Scholar
Kaladze, T. D., Kahlon, L. Z., Tsamalashvili, L. V. & Kaladze, D. T. 2012b Generation of zonal flow and magnetic field by coupled internal-gravity and alfvén waves in the ionospheric E-layer. J. Atmos. Sol.-Terr. 89, 110119.Google Scholar
Lastovicka, J. 1997 Observations of tides and planetary waves in the atmosphere–ionosphere system. Adv. Space Res. 20, 12091222.Google Scholar
Lawrence, A. R. & Jarvis, M. J. 2003 Simultaneous observations of planetary waves from 30 to 220 km. J. Atmos. Sol.-Terr. Phys. 65, 765777.CrossRefGoogle Scholar
Lewis, J. P., Rock, D. R., Shaeffer, D. L. & Warshaw, S. I.1999 Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations. UCRL-ID-133240, Lawrance Livermore National Lab., CA (US).Google Scholar
Liperovsky, V. A., Pokhotelov, O. A. & Shalimov, S. L. 1992 Ionospheric Earthquake Precursos. Nauka (in Russian).Google Scholar
Manson, A. H., Heek, C. E. & Gregory, J. B. 1981 Winds and waves (10 min–30 day) in the mesosphere and lower thermosphere at Saskatoon (52°  N, 107°  W, $\text{L}=4.3$ ) during the year, October 1979 to July 1980. J. Geophys. Res. 86, 96159625.Google Scholar
Pedlosky, J. 1994 Geophysical Fluid Dynamics. pp. 490518. Springer.Google Scholar
Petviashvili, V. I. & Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. Gordon and Breach.Google Scholar
Pokhotelov, O. A., Parrot, M., Fedorov, E. N., Pilipenko, V. A., Surkov, V. V. & Gladychev, V. A. 1995 Response of the ionosphere to natural and man-made acoustic sources. Ann. Geophys. 13, 11971210.Google Scholar
Randel, W. J. 1987 A study of planetary waves in the southern winter troposphere and stratosphere. Part I: wave structure and vertical propagation. J. Atmos. Sci. 44, 917935.Google Scholar
Rishbeth, H. 1972 Superrotation of the upper atmosphere. Rev. Geophys. Space Phys. 10, 799819.CrossRefGoogle Scholar
Satoh, M. 2004 Atmospheric Circulation Dynamics and General Circulation Models. pp. 415525. Springer.Google Scholar
Sharadze, Z. S., Japaridze, G. A., Kikvilashvili, G. B. & Liadze, Z. L. 1988 Wavy disturbances of non-acoustical nature in the middle-latitude ionosphere. Geomag. Aeron. 28, 446451.Google Scholar
Sharadze, Z. S., Mosiashvili, N. V., Pushkova, G. N. & Yudovich, L. A. 1989 Long-period wave disturbances in $E$ -region of the ionosphere. Geomag. Aeron. 29, 10321035.Google Scholar
Smith, A. K. 1997 Stationary planetary waves in upper mesospheric winds. J. Atmos. Sci. 54, 21292145.Google Scholar
Sorokin, V. M. 1988 Wavy processes in the ionosphere related to the geomagnetic field. Izv. Vyssh. Uchebn. Zaved., Izv. Vuz. Radiofis. 31, 1169 (in Russian).Google Scholar
Williams, C. R. & Avery, S. K. 1992 Analysis of long-period waves using the mesosphere–stratosphere–troposphere radar at Poker Flat, Alaska. J. Geophys. Res. 97, 20855.Google Scholar
Zhou, Q. H., Sulzer, M. P. & Tepley, C. A. 1997 An analysis of tidal and planetary waves in the neutral winds and temperature observed at low-latitude E-region heights. J. Geophys. Res. 102, 1149111505.CrossRefGoogle Scholar