Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T05:44:43.518Z Has data issue: false hasContentIssue false

Intermittency of magnetic field turbulence: Astrophysical applications of in-situ observations

Published online by Cambridge University Press:  22 April 2015

Lev M. Zelenyi
Affiliation:
Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str, Moscow, Russia
Andrei M. Bykov
Affiliation:
A.F.Ioffe Physical-Technical Institute, St Petersburg 194021, also St Petersburg State Polytechnical University, Russia
Yury A. Uvarov
Affiliation:
A.F.Ioffe Physical-Technical Institute, St Petersburg 194021, also St Petersburg State Polytechnical University, Russia
Anton V. Artemyev*
Affiliation:
Space Research Institute (IKI), 117997, 84/32 Profsoyuznaya Str, Moscow, Russia
*
Email address for correspondence: ante0226@gmail.com

Abstract

We briefly review some aspects of magnetic turbulence intermittency observed in space plasmas. Deviation of statistical characteristics of a system (e.g. its high statistical momenta) from the Gaussian can manifest itself as domination of rare large intensity peaks often associated with the intermittency in the system's dynamics. Thirty years ago, Zeldovich stressed the importance of the non-Gaussian appearance of the sharp values of vector and scalar physical parameters in random media as a factor of magnetic field amplification in cosmic structures. Magnetic turbulence is governing the behavior of collisionless plasmas in space and especially the physics of shocks and magnetic reconnections. Clear evidence of intermittent magnetic turbulence was found in recent in-situ spacecraft measurements of magnetic fields in the near-Earth and interplanetary plasma environments. We discuss the potentially promising approaches of incorporating the knowledge gained from spacecraft in-situ measurements into modern models describing plasma dynamics and radiation in various astrophysical systems. As an example, we discuss supernova remnants (SNRs) which are known to be the sources of energy, momentum, chemical elements, and high-energy cosmic rays (CRs) in galaxies. Supernova shocks accelerate charged particles to very high energies and may strongly amplify turbulent magnetic fields via instabilities driven by CRs. Relativistic electrons accelerated in SNRs radiate polarized synchrotron emission in a broad range of frequencies spanning from the radio to gamma-rays. We discuss the effects of intermittency of magnetic turbulence on the images of polarized synchrotron X-ray emission of young SNRs and emission spectra of pulsar wind nebula.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdo, A. A. et al. 2011 Gamma-ray flares from the Crab nebula. Science 331, 739742.Google Scholar
Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard, H., Balikhin, M. and Rolland, G. 2013 Statistics of whistler mode waves in the outer radiation belt: cluster STAFF-SA measurements. J. Geophys. Res. 118, 34073420.Google Scholar
Alexandrova, O., Chen, C. H. K., Sorriso-Valvo, L., Horbury, T. S. and Bale, S. D. 2013 Solar wind turbulence and the role of ion instabilities. Space Sci. Rev. 178, 101139.Google Scholar
Alexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J. and Robert, P. 2009 Universality of solar-wind turbulent spectrum from MHD to electron scales. Phys. Rev. Lett. 103 (16), 165003.Google Scholar
Angelopoulos, V., Baumjohann, W., Kennel, C. F., Coronti, F. V., Kivelson, M. G., Pellat, R., Walker, R. J., Luehr, H. and Paschmann, G. 1992 Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. 97, 40274039.Google Scholar
Arons, J. 2012 Pulsar wind nebulae as cosmic pevatrons: a current sheet's tale. Space Sci. Rev. 173, 341367.Google Scholar
Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C. and Sundkvist, D. 2009 Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Phys. Rev. Lett. 103 (21), 211101.Google Scholar
Bell, A. R. 2004 Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. Mon. Not. R. Astron. Soc., 353, 550558.Google Scholar
Blandford, R. and Eichler, D. 1987 Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys. Rep. 154, 175.Google Scholar
Bruno, R. and Carbone, V. 2005 The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. 2, 4.Google Scholar
Bruno, R., Carbone, V., Primavera, L., Malara, F., Sorriso-Valvo, L., Bavassano, B. and Veltri, P. 2004 On the probability distribution function of small-scale interplanetary magnetic field fluctuations. Ann. Geophys. 22, 37513769.Google Scholar
Bruno, R. and Trenchi, L. 2014 Radial dependence of the frequency break between fluid and kinetic scales in the solar wind fluctuations. Astrophys. J. Lett. 787, L24.Google Scholar
Bühler, R. and Blandford, R. 2014 The surprising Crab pulsar and its nebula: a review. Rep. Prog. Phys. 77, 066901.Google Scholar
Burlaga, L. F. 1991 Intermittent turbulence in the solar wind. J. Geophys. Res. 96, 58475851.Google Scholar
Bykov, A. M., Brandenburg, A., Malkov, M. A. and Osipov, S. M. 2013 Microphysics of cosmic ray driven plasma instabilities. Space Sci. Rev. 178, 201232.Google Scholar
Bykov, A. M., Ellison, D. C., Osipov, S. M., Pavlov, G. G. and Uvarov, Y. A. 2011 X-ray stripes in Tycho's supernova remnant: synchrotron footprints of a nonlinear cosmic-ray-driven instability. Astrophys. J. Lett. 735, L40.Google Scholar
Bykov, A. M., Ellison, D. C., Osipov, S. M. and Vladimirov, A. E. 2014 Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities. Astrophys. J. 789, 137.Google Scholar
Bykov, A. M., Pavlov, G. G., Artemyev, A. V. and Uvarov, Y. A. 2012 Twinkling pulsar wind nebulae in the synchrotron cut-off regime and the γ-ray flares in the Crab nebula. Mon. Not. R. Astron. Soc. 421, L67L71.Google Scholar
Bykov, A. M., Uvarov, Y. A., Bloemen, J. B. G. M., den Herder, J. W. and Kaastra, J. S. 2009 A model of polarized X-ray emission from twinkling synchrotron supernova shells. Mon. Not. R. Astron. Soc. 399, 11191125.Google Scholar
Bykov, A. M., Uvarov, Y. A. and Ellison, D. C. 2008 Dots, clumps, and filaments: the intermittent images of synchrotron emission in random magnetic fields of young Supernova remnants. Astrophys. J. Lett. 689, L133L136.Google Scholar
Coleman, P. J. Jr. 1968 Turbulence, viscosity, and dissipation in the solar-wind plasma. Astrophys. J. 153, 371.Google Scholar
Dasso, S., Milano, L. J., Matthaeus, W. H. and Smith, C. W. 2005 Anisotropy in fast and slow solar wind fluctuations. Astrophys. J. Lett. 635, L181L184.Google Scholar
Dobrowolny, M., Mangeney, A. and Veltri, P. 1980 Fully developed anisotropic hydromagnetic turbulence in interplanetary space. Phys. Rev. Lett. 45, 144147.Google Scholar
Dudok de Wit, T., Alexandrova, O., Furno, I., Sorriso-Valvo, L. and Zimbardo, G. 2013 Methods for characterising microphysical processes in plasmas. Space Sci. Rev. 178, 665693.Google Scholar
Eriksen, K. A. et al. 2011 Evidence for particle acceleration to the knee of the cosmic ray spectrum in Tycho's supernova remnant. Astrophys. J. Lett. 728, L28.Google Scholar
Escoubet, C. P., Fehringer, M. and Goldstein, M. 2001 Introduction: the cluster mission. Ann. Geophys. 19, 11971200.Google Scholar
Frisch, U. 1995 Turbulence. The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge (UK).Google Scholar
Galtier, S., Nazarenko, S. V., Newell, A. C. and Pouquet, A. 2001 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.Google Scholar
Giacalone, J. and Jokipii, J. R. 1999 The transport of cosmic rays across a turbulent magnetic field. Astrophys. J. 520, 204214.Google Scholar
Goldreich, P. and Sridhar, S. 1997 Magnetohydrodynamic turbulence revisited. Astrophys. J. 485, 680688.Google Scholar
Gosling, J. T. 2012 Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187200.Google Scholar
Greco, A., Valentini, F., Servidio, S. and Matthaeus, W. H. 2012 Inhomogeneous kinetic effects related to intermittent magnetic discontinuities. Phys. Rev. E 86 (6), 066405.Google Scholar
Hasegawa, A. 1971 Plasma instabilities in the magnetosphere. Rev. Geophys. Space Phys. 9, 703772.Google Scholar
Hellinger, P., Trávníček, P., Kasper, J. C. and Lazarus, A. J. 2006 Solar wind proton temperature anisotropy: linear theory and WIND/SWE observations. Geophys. Res. Lett. 33, 9101.Google Scholar
Horbury, T. S., Forman, M. and Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.Google Scholar
Horbury, T. S., Wicks, R. T. and Chen, C. H. K. 2012 Anisotropy in space plasma turbulence: solar wind observations. Space Sci. Rev. 172, 325342.Google Scholar
Huang, S. Y. 2012 Observations of turbulence within reconnection jet in the presence of guide field. Geophys. Res. Lett. 39, 11104.Google Scholar
Iroshnikov, P. S. 1964 Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 8285.Google Scholar
Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.Google Scholar
Kuznetsov, E. and Krasnoselskikh, V. 2008 Anisotropic spectra of acoustic type turbulence. Phys. Plasmas 15 (6), 062305.Google Scholar
Lapenta, G. 2003 A new paradigm for 3D collisionless magnetic reconnection. Space Sci. Rev. 107, 167174.Google Scholar
Lapenta, G. and Brackbill, J. U. 2000 3D reconnection due to oblique modes: a simulation of Harris current sheets. Nonlinear Process. Geophys. 7, 151158.Google Scholar
Marsch, E. and Tu, C.-Y. 1997 Intermittency, non-gaussian statistics and fractal scaling of MHD fluctuations in the solar wind. Nonlinear Process. Geophys. 4, 101124.Google Scholar
Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W. and Thorne, R. M. 2012 Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res. 117, 10225.Google Scholar
Milovanov, A. V. and Zelenyi, L. M. 1994a Development of fractal structure in the solar wind and distribution of magnetic field in the photosphere. Wash. DC Am. Geophys. Union Geophys. Monogr. Ser. 84, 4352.Google Scholar
Milovanov, A. V. and Zelenyi, L. M. 1994b Fractal cluster in the solar wind. Adv. Space Res. 14, 123133.Google Scholar
Narita, Y., Glassmeier, K.-H. and Treumann, R. A. 2006 Wave-number spectra and intermittency in the terrestrial foreshock region. Phys. Rev. Lett. 97 (19), 191101.Google Scholar
Obukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Geophys. Res. 67, 3011.Google Scholar
Ogilvie, K. W., von Rosenvinge, T. and Durney, A. C. 1977 International Sun-Earth explorer: a three-spacecraft program. Science 198, 131138.Google Scholar
Petrukovich, A. A. 2005 Low frequency magnetic fluctuations in the Earth's plasma sheet. In: Astrophysics and Space Science Library, Vol. 321 (ed. Sharma, A. S. and Kaw, P. K.), Springer, Dordrecht. p. 145.Google Scholar
Sahraoui, F., Goldstein, M. L., Belmont, G., Canu, P. and Rezeau, L. 2010 Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105 (13), 131101.Google Scholar
Schure, K. M., Bell, A. R., O'C, Drury, L. and Bykov, A. M. 2012 Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev. 173, 491519.Google Scholar
Sharma, A. S. and Curtis, S. A. 2005 Magnetospheric multiscale mission. In: Astrophysics and Space Science Library, Vol. 321 (ed. Sharma, A. S. and Kaw, P. K.), Springer, Dordrecht. p. 179.Google Scholar
Sorriso-Valvo, L., Carbone, V., Giuliani, P., Veltri, P., Bruno, R., Antoni, V. and Martines, E. 2001 Intermittency in plasma turbulence. Planet. Space Sci. 49, 11931200.Google Scholar
Tananbaum, H., Weisskopf, M. C., Tucker, W., Wilkes, B. and Edmonds, P. 2014 Highlights and discoveries from the Chandra X-ray observatory. Rep. Prog. Phys. 77, 066902.Google Scholar
Tavani, M. et al. 2011 Discovery of powerful gamma-ray flares from the Crab nebula. Science 331, 736739.Google Scholar
Treumann, R. A. and Baumjohann, W. 2013 Collisionless magnetic reconnection in space plasmas. Front. Phys. 1, 31.Google Scholar
Uchiyama, Y., Aharonian, F. A., Tanaka, T., Takahashi, T. and Maeda, Y. 2007 Extremely fast acceleration of cosmic rays in a supernova remnant. Nature 449, 576578.Google Scholar
Vink, J. and Laming, M. 2003 On the magnetic fields and particle acceleration in Cassiopeia A. Astrophys. J. 584, 758769.Google Scholar
Vörös, Z., Baumjohann, W., Nakamura, R., Runov, A., Volwerk, M., Asano, Y., Jankovičová, D., Lucek, E. A. and Rème, H. 2007 Spectral scaling in the turbulent Earth's plasma sheet revisited. Nonlinear Process. Geophys. 14, 535541.Google Scholar
Weygand, J. M., Matthaeus, W. H., El-Alaoui, M., Dasso, S. and Kivelson, M. G. 2010 Anisotropy of the Taylor scale and the correlation scale in plasma sheet magnetic field fluctuations as a function of auroral electrojet activity. J. Geophys. Res. 115, 12250.Google Scholar
Wicks, R. T., Horbury, T. S., Chen, C. H. K. and Schekochihin, A. A. 2010 Power and spectral index anisotropy of the entire inertial range of turbulence in the fast solar wind. Mon. Not. R. Astron. Soc. 407, L31L35.Google Scholar
Wiegelmann, T. and Büchner, J. 2000 Kinetic simulations of the coupling between current instabilities and reconnection in thin current sheets. Nonlinear Process. Geophys. 7, 141150.Google Scholar
Yaglom, A. M. 1966 The influence of fluctuations in energy dissipation on the shape of turbulence characteristics in the inertial interval. Sov. Phys. Dokl. 11, 26.Google Scholar
Zeldovich, Y. B., Molchanov, S. A., Ruzmaikin, A. A. and Sokolov, D. D. 1985 Intermittency of passive field in random media. Sov. Phys. - JETP 62, 11881194.Google Scholar
Zeldovich, Y. B., Molchanov, S. A., Ruzmaikin, A. A. and Sokolov, D. D. 1987 Intermittency in random media. Sov. Phys. Usp. 30, 353369.Google Scholar
Zelenyi, L., Artemyev, A. and Petrukovich, A. 2014 Properties of magnetic field fluctuations in the Earth's magnetotail and implications for the general problem of structure formation in hot plasmas. Space Sci. Rev., doi: 10.1007/s11214-014-0037-7.Google Scholar
Zelenyi, L. M., Malova, H. V., Artemyev, A. V., Popov, V. Y. and Petrukovich, A. A. 2011 Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Rep. 37, 118160.Google Scholar
Zelenyi, L. M. and Milovanov, A. V. 2004 Fractal topology and strange kinetics: from percolation theory to problems in cosmic electrodynamics. Phys. Usp. 47, 749788.Google Scholar
Zelenyi, L. M., Triska, P. and Petrukovich, A. 1997 Interball-dual probe and dual mission. Adv. Space Res. 20, 549557.Google Scholar
Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K. and Alexandrova, O. 2010 Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89134.Google Scholar