Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T11:33:47.346Z Has data issue: false hasContentIssue false

Ion-acoustic solitons in plasmas with two adiabatic constituents

Published online by Cambridge University Press:  18 December 2009

FRANK VERHEEST
Affiliation:
Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium (Frank.Verheest@UGent.be) School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
MANFRED A. HELLBERG
Affiliation:
School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa

Abstract

Large amplitude ion-acoustic solitons are treated by a Sagdeev pseudopotential analysis, in a plasma with two adiabatic constituents, with the full inclusion of inertial and pressure effects for both. The sign of the supersonic species determines the polarity of the solitons, which are compressive in both constituents. Emphasis is placed on the determination of the soliton existence domains in compositional parameter space, allowing correct Sagdeev pseudopotential graphs to be easily generated, and offering insight into why limitations occur. Soliton velocities are bounded from below by the true acoustic velocity in the plasma model, and from above by the breakdown of the description when the supersonic ions reach their sonic point. Increases in the mass density ratio and the soliton velocity or decreases in the temperature ratio lead to increases in soliton amplitudes and decreases of the widths. Applications include hydrogen and electron–positron plasmas, and various kinds of dusty plasmas.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bliokh, P., Sinitsin, V. and Yaroshenko, V. 1995 Dusty and Self-Gravitational Plasmas in Space. Dordrecht, The Netherlands: Kluwer Academic.CrossRefGoogle Scholar
Chow, V. W., Mendis, D. A. and Rosenberg, M. 1993 Role of grain size and particle velocity distribution in secondary electron emission in space plasmas. J. Geophys. Res. 98, 1906519076.CrossRefGoogle Scholar
Dubinov, A. E., Dubinova, I. D. and Gordienko, V. A. 2006 Solitary electrostatic waves are possible in unmagnetized symmetric pair plasmas. Phys. Plasmas 13, 082111.CrossRefGoogle Scholar
Ghosh, S. S., Ghosh, K. K. and Sekar Iyengar, A. N. 1996 Large Mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma. Phys. Plasmas 3, 39393946.CrossRefGoogle Scholar
Mamun, A. A. 2008 Effect of adiabaticity of electrons and ions on dust-ion-acoustic solitary waves. Phys. Lett. A 372, 14901493.CrossRefGoogle Scholar
Mamun, A. A., Jahan, N. and Shukla, P. K. 2009 DIA and DA solitary waves in adiabatic dusty plasmas. J. Plasma Phys. 75, 413431.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2002 Solitary potentials in cometary dusty plasmas. Geophys. Res. Lett. 29, 1870, doi:10.1029/2002GL015219.CrossRefGoogle Scholar
McKenzie, J. F. 2002 The ion-acoustic soliton: a gas-dynamic point of view. Phys. Plasmas 9, 800805.CrossRefGoogle Scholar
McKenzie, J. F. and Doyle, T. B. 2003 A unified view of acoustic-electrostatic solitons in complex plasmas. New J. Phys. 5, 26.CrossRefGoogle Scholar
Oohara, W. and Hatakeyama, R. 2003 Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005.CrossRefGoogle ScholarPubMed
Pillay, S. R. and Bharuthram, R. 1992 Large amplitude solitons in a multi-species electron-positron plasma. Astrophys. Space Sci. 198, 8593.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Dust-acoustic waves in dusty plasmas. Planet. Space Sci. 38, 543546.CrossRefGoogle Scholar
Sagdeev, R. Z. 1966 Cooperative phenomena and shock waves in collisionless plasmas. In: Reviews of Plasma Physics, Vol. 4 (ed. Leontovich, M. A.). New York: Consultants Bureau, pp. 2391.Google Scholar
Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory. New York: W. A. Benjamin.Google Scholar
Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. London: IOP Press.CrossRefGoogle Scholar
Srinivas, J., Popel, S. I. and Shukla, P. K. 1996 Electrostatic solitons in an electron-positron plasma with two distinct groups of positrons. J. Plasma Phys. 55, 209217.CrossRefGoogle Scholar
Tanjia, F. and Mamun, A. A. 2009 Adiabatic effects of electrons and ions on electro-acoustic solitary waves in an adiabatic dusty plasma. J. Plasma Phys. 75, 99110.CrossRefGoogle Scholar
Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Verheest, F. 2005 On the nonexistence of large amplitude stationary solitary waves in symmetric unmagnetized pair plasmas. Nonl. Proc. Geophys. 12, 569574.CrossRefGoogle Scholar
Verheest, F. 2006 Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301.CrossRefGoogle Scholar
Verheest, F., Hellberg, M. A., Gray, G. J. and Mace, R. L. 1996 Electrostatic solitons in multispecies electron–positron plasmas. Astrophys. Space Sci. 239, 125139.CrossRefGoogle Scholar
Verheest, F., Cattaert, T., Lakhina, G. S. and Singh, S. V. 2004 Gas-dynamic description of electrostatic solitons. J. Plasma Phys. 70, 237250.CrossRefGoogle Scholar
Verheest, F., Hellberg, M. A. and Lakhina, G. S. 2007 Necessary conditions for the generation of acoustic solitons in magnetospheric and space plasmas with hot ions. Astrophys. Space Sci. Trans. 3, 1520.CrossRefGoogle Scholar
Verheest, F., Hellberg, M. A. and Kourakis, I. 2008 Acoustic solitary waves in dusty and/or multi-ion plasmas with cold, adiabatic and hot constituents. Phys. Plasmas 15, 112309.CrossRefGoogle Scholar