Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T06:04:42.059Z Has data issue: false hasContentIssue false

Langmuir waves across the heliosphere

Published online by Cambridge University Press:  03 March 2015

C. Briand*
Affiliation:
LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris Diderot; 5 Place Jules Janssen, F-92190 Meudon, France
*
Email address for correspondence: carine.briand@obspm.fr

Abstract

All the bodies of the solar system are embedded in the supersonic flux of energetic particles emitted by the Sun. Since the advent of the space age, the models to describe the interaction of this plasma flow with the planets, asteroids, comets etc. have drastically progressed. The possibilities of in situ measurements of the particle distributions and electromagnetic fields have enabled the plasma theories to be tested under astrophysical conditions. Energy transfer from the Sun to the outermost regions of the heliosphere as well as the processes leading to the dissipation of this energy are central questions for heliophysicists. Understanding the dynamics of the particles is thus critical. It is a particularly complicated subject since the medium is (almost) non-collisional. Thus, next to the description of the particles, the development of waves must be considered. Indeed, they participate to the exchange of energy between different species that would not interact otherwise. In other words, waves may play the role of collisions. This paper concentrates on Langmuir waves for their strong links with the electron dynamics. The basic processes of growth and saturation of the Langmuir waves are reviewed to stress their diagnostic capabilities. Then, the characteristics of the waves are described in the several heliophysical contexts: the planetary environments (in particular the ionosphere, the magnetotail and the foreshock) and in the interplanetary medium (in quiescent conditions of the solar wind or during transient events). A particular emphasis is given to results obtained in the last 15 years.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. R., Parks, G. K., Eastman, T. E., Gurnett, D. A. and Frank, L. A. 1981 Plasma waves associated with energetic particles streaming into the solar wind from the earth's bow shock. J. Geophys. Res. 86, 44934510.Google Scholar
Antipov, S. V., Nezlin, M. V., Snezhkin, E. N. and Trubnikov, A. S. 1977 Modulation instability of Langmuir waves excited in a plasma by an electron beam. ZhETF Pisma Redaktsiiu 25, 158161.Google Scholar
Arridge, C. S.et al. 2012 Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Exp. Astron. 33, 753791.Google Scholar
Arshad, K., Siddique, F., Mirza, A. M. and Aman-ur-Rehman, 2014 Stability criterion for the non-Maxwellian permeating plasma. Adv. Plan. Space Sci. 350, 169174.Google Scholar
Bale, S. D., Chisham, G., Burgess, D. and Schwartz, S. J. 1997 Langmuir wave amplitudes and the electron distribution function near the solar wind-foreshock boundary. Adv. Space Res. 20, 695698.Google Scholar
Balmforth, N. J. 2012 BGK states from the bump-on-tail instability. Commun. Nonlinear Sci. Numer. Simul. 17, 19891997.Google Scholar
Boshuizen, C. R., Cairns, I. H. and Robinson, P. A. 2001 Stochastic growth theory of spatially-averaged distributions of Langmuir Fields in Earth's foreshock. Geophys. Res. Lett. 28, 35693572.CrossRefGoogle Scholar
Boshuizen, C. R., Cairns, I. H. and Robinson, P. A. 2004 Electric field distributions for Langmuir waves in planetary foreshocks. J. Geophys. Res. (Space Phys.) 109, 8101.Google Scholar
Bougeret, J. L.et al. 2008 S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487528.Google Scholar
Briand, C., Henri, P. and Hoang, S. 2014 Inhibition of type III radio emissions due to the interaction between two electron beams: observations and simulations. J. Geophys. Res. (Space Phys.) 119, 23652378.Google Scholar
Briand, C., Mangeney, A. and Califano, F. 2007 Electrostatic coherent structures generation by local heating in a collisionless plasma. Phys. Lett. A 368, 8286.Google Scholar
Briand, C., Soucek, J., Henri, P. and Mangeney, 2010 Waves at the plasma frequency inside magnetic holes: STEREO and CLUSTER observations. J. Geophys. Res. 115, A12113.Google Scholar
Burinskaya, T. M., Rusanov, A. A., Rauch, J. L., Miles, A., Mogilevsky, M. M., Trotignon, J. G., Lefeuvre, F. and Sauvaud, J. A. 2003 Small-scale bursts of Langmuir waves in the polar cap. Adv. Space Res. 31, 12471252.Google Scholar
Cai, C. L., Dandouras, I., Rème, H., Cao, J. B., Zhou, G. C., Parks, G. K. and Fontaine, D. 2009 Foreshock-like density cavity in the outflow region of magnetotail reconnection. Ann. Geophys. 27, 30433053.Google Scholar
Cairns, I. H. and Menietti, J. D. 2001 Stochastic growth of waves over Earth's polar cap. J. Geophys. Res. 106, 29 51529 530.Google Scholar
Cairns, I. H. and Robinson, P. A. 1992 Theory for low-frequency modulated Langmuir wave packets. Geophys. Res. Lett. 19, 21872190.Google Scholar
Cairns, I. H. and Robinson, P. A. 1999 Strong evidence for stochastic growth of Langmuir-like waves in Earth's foreshock. Phys. Rev. Lett. 82, 30663069.Google Scholar
Canu, P., Cornilleau-Wehrlin, N., de Villedary, C., Kellogg, P. J., Harvey, C. C. and MacDowall, R. J. 1993 Observations of electron plasma waves upstream of the Jovian bow shock. Planet. Space Sci. 41, 811822.CrossRefGoogle Scholar
Carr, C.et al. 2007 RPC: the Rosetta plasma consortium. Space Sci. Rev. 128, 629647.CrossRefGoogle Scholar
Celnikier, L. M., Harvey, C. C., Jegou, R., Moricet, P. and Kemp, M. 1983 A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293298.Google Scholar
Chapman, T., Hüller, S., Masson-Laborde, P. E., Rozmus, W. and Pesme, D. 2010 Spatially autoresonant stimulated Raman scattering in inhomogeneous plasmas in the kinetic regime. Phys. Plasmas 17 (12), 122317.CrossRefGoogle Scholar
Coates, A. J. 2004 Ion pickup at comets. Adv. Space Res. 33, 19771988.Google Scholar
Crawford, G. K., Strangeway, R. J. and Russell, C. T. 1990 Electron plasma oscillations in the Venus foreshock. Geophys. Res. Lett. 17, 18051808.Google Scholar
Deng, X. H., Matsumoto, H., Kojima, H., Mukai, T., Anderson, R. R., Baumjohann, W. and Nakamura, R. 2004 Geotail encounter with reconnection diffusion region in the Earth's magnetotail: evidence of multiple X lines collisionless reconnection? J. Geophys. Res. (Space Phys.) 109, 5206.Google Scholar
Dylov, D. V. and Fleischer, J. W. 2008 Observation of all-optical bump-on-tail instability. Phys. Rev. Lett. 100 (10), 103903.CrossRefGoogle ScholarPubMed
Eastwood, J. P., Lucek, E. A., Mazelle, C., Meziane, K., Narita, Y., Pickett, J. and Treumann, R. A. 2005 The foreshock. Space Sci. Rev. 118, 4194.Google Scholar
Ergun, R. E., Andersson, L., Peterson, W. K., Brain, D., Delory, G. T., Mitchell, D. L., Lin, R. P. and Yau, A. W. 2006 Role of plasma waves in Mars' atmospheric loss. Geophys. Res. Lett. 33, 14103.Google Scholar
Ergun, R. E., Carlson, C. W., McFadden, J. P., Clemmons, J. H. and Boehm, M. H. 1991 Langmuir wave growth and electron bunching - Results from a wave-particle correlator. J. Geophys. Res. 96, 225238.Google Scholar
Ergun, R. E.et al. 2008 Eigenmode structure in solar-wind Langmuir waves. Phys. Rev. Lett. 101 (5), 051101.CrossRefGoogle ScholarPubMed
Farrell, W. M., Desch, M. D., Kaiser, M. L. and Goetz, K. 2002 The dominance of electron plasma waves near a reconnection X-line region. Geophys. Res. Lett. 29, 1902.Google Scholar
Filbert, P. C. and Kellogg, P. J. 1979 Electrostatic noise at the plasma frequency beyond the earth's bow shock. J. Geophys. Res. 84, 13691381.Google Scholar
Fitzenreiter, R. J. 1995 The electron foreshock. Adv. Space Res. 15, 927.CrossRefGoogle Scholar
Fitzenreiter, R. J., Klimas, A. J. and Scudder, J. D. 1984 Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary. Geophys. Res. Lett. 11, 496499.CrossRefGoogle Scholar
Fitzenreiter, R. J., Ogilvie, K. W., Bale, S. D. and Viñas, A. F. 2003 Modification of the solar wind electron velocity distribution at interplanetary shocks. J. Geophys. Res. (Space Phys.) 108, 1415.CrossRefGoogle Scholar
Forme, F. R. E. 1999 Parametric decay of beam-driven Langmuir wave and enhanced ion-acoustic fluctuations in the ionosphere: a weak turbulence approach. Ann. Geophys. 17, 11721181.Google Scholar
Friou, A., Bénisti, D., Gremillet, L., Lefebvre, E., Morice, O., Siminos, E. and Strozzi, D. J. 2013 Saturation mechanisms of backward stimulated Raman scattering in a one-dimensional geometry. Phys. Plasmas 20 (10), 103103.Google Scholar
Ginzburg, V. L. and Zheleznyakov, V. V. 1958 On the possible mechanisms of sporadic solar radio emission (radiation in an isotropic plasma). Sov. Astron. 2, 653.Google Scholar
Graham, D. B., Cairns, I. H. and Malaspina, D. M. 2014 Harmonic waves and sheath rectification in type III solar radio bursts. J. Geophys. Res. (Space Phys.) 119, 723741.Google Scholar
Graham, D. B., Cairns, I. H., Malaspina, D. M. and Ergun, R. E. 2012a Evidence against the oscillating two-stream instability and spatial collapse of Langmuir waves in solar type III radio bursts. Astrophys. J. Lett. 753, L18.Google Scholar
Graham, D. B., Cairns, I. H., Prabhakar, D. R., Ergun, R. E., Malaspina, D. M., Bale, S. D., Goetz, K. and Kellogg, P. J. 2012b Do Langmuir wave packets in the solar wind collapse? J. Geophys. Res. (Space Phys.) 117, 9107.Google Scholar
Grard, R., Pedersen, A., Klimov, S., Savin, S. and Skalskii, A. 1989 First measurements of plasma waves near Mars. Nature 341, 607609.Google Scholar
Grard, R., Pedersen, A., Trotignon, J.-G., Beghin, C., Mogilevsky, M., Mikhailov, Y., Molchanov, O. and Formisano, V. 1986 Observations of waves and plasma in the environment of comet Halley. Nature 321, 290.Google Scholar
Grasset, O.et al. 2013 JUpiter ICy moons explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 121.Google Scholar
Greenstadt, E. W., Crawford, G. K., Strangeway, R. J., Moses, S. L. and Coroniti, F. V. 1995 Spatial distribution of electron plasma oscillations in the Earth's foreshock at ISEE 3. J. Geophys. Res. 100, 19 93319 940.Google Scholar
Gurnett, D. A. and Anderson, R. R. 1977 Plasma wave electric fields in the solar wind - Initial results from HELIOS 1. J. Geophys. Res. 82, 632650.Google Scholar
Gurnett, D. A., Anderson, R. R., Scarf, F. L. and Kurth, W. S. 1978 The heliocentric radial variation of plasma oscillations associated with type III radio bursts. J. Geophys. Res. 83, 41474152.Google Scholar
Gurnett, D. A. and Kurth, W. S. 2005 Electron plasma oscillations upstream of the solar wind termination shock. Science 309, 20252027.CrossRefGoogle ScholarPubMed
Gurnett, D. A., Kurth, W. S., Poynter, R. L., Granroth, L. J., Cairns, I. H., Macek, W. M., Moses, S. L., Coroniti, F. V., Kennel, C. F. and Barbosa, D. D. 1989 First plasma wave observations at Neptune. Science 246, 14941498.Google Scholar
Gurnett, D. A., Kurth, W. S. and Scarf, F. L. 1981 Plasma waves near Saturn - Initial results from Voyager 1. Science 212, 235239.CrossRefGoogle ScholarPubMed
Gurnett, D. A., Kurth, W. S., Scarf, F. L. and Poynter, R. L. 1986 First plasma wave observations of Uranus. Science 233, 106109.Google Scholar
Henri, P., Briand, C., Mangeney, A., Bale, S. D., Califano, F., Goetz, K. and Kaiser, M. 2009 Evidence for wave coupling in type III emissions. J. Geophys. Res. (Space Phys.) 114, A03103, doi:10.1029/2008JA013738.CrossRefGoogle Scholar
Henri, P., Califano, F., Briand, C. and Mangeney, A. 2010a Vlasov–poisson simulations of electrostatic parametric instability for localized Langmuir wave packets in the solar wind. J. Geophys. Res. (Space Phys.) 115, 106119.Google Scholar
Henri, P., Califano, F., Briand, C. and Mangeney, A. 2010b Vlasov simulations of Langmuir Electrostatic decay and consequences for type III observations. In: Proc. 12th Int. Solar Wind Conf., Vol. 1216, 288291.Google Scholar
Henri, P., Califano, F., Briand, C. and Mangeney, A. 2011a Low-energy Langmuir cavitons: asymptotic limit of weak turbulence. EPL (Europhys. Lett.) 96, 55004.Google Scholar
Henri, P., Meyer-Vernet, N., Briand, C. and Donato, S. 2011b Observations of Langmuir ponderomotive effects using the Solar TErrestrial RElations Observatory spacecraft as a density probe. Phys. Plasmas 18 (8), 082308.Google Scholar
Ho, C. M., Strangeway, R. J. and Russell, C. T. 1993 Evidence for Langmuir oscillations and a low density cavity in the Venus magnetotail. Geophys. Res. Lett. 20, 27752778.Google Scholar
Ho, C.-M., Strangeway, R. J. and Russell, C. T. 1994 Spatial distribution of plasma wave activity in the nightside ionosphere of Venus. Planet. Space Sci. 42, 813823.Google Scholar
Hoang, S., Steinberg, J. L., Stone, R. G., Zwickl, R. H. and Fainberg, J. 1981 The 2fp circumterrestrial radio radiation as seen from ISEE 3. J. Geophys. Res. 86, 45314536.Google Scholar
Hospodarsky, G. B. and Gurnett, D. A. 1995 Beat-type Langmuir wave emissions associated with a type III solar radio burst: evidence of parametric decay. Geophys. Res. Lett. 22, 11611164.CrossRefGoogle Scholar
Hospodarsky, G. B., Gurnett, D. A., Kurth, W. S., Kivelson, M. G., Strangeway, R. J. and Bolton, S. J. 1994 Fine structure of Langmuir waves observed upstream of the bow shock at Venus. J. Geophys. Res. 99, 13 363–+.CrossRefGoogle Scholar
Kasaba, Y.et al. 2010 The plasma wave investigation (PWI) onboard the BepiColombo/MMO: first measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet. Space Sci. 58, 238278.Google Scholar
Kasaba, Y., Matsumoto, H., Omura, Y., Anderson, R. R., Mukai, T., Saito, Y., Yamamoto, T. and Kokubun, S. 2000 Statistical studies of plasma waves and backstreaming electrons in the terrestrial electron foreshock observed by Geotail. J. Geophys. Res. 105, 79104.Google Scholar
Kellogg, P. J. 2003 Langmuir waves associated with collisionless shocks; a review. Planet. Space Sci. 51, 681691.CrossRefGoogle Scholar
Kellogg, P. J. and Bale, S. D. 2004 Nearly monochromatic waves in the distant tail of the Earth. J. Geophys. Res. (Space Phys.) 109, 4223.Google Scholar
Kennel, C. F., Coroniti, F. V., Scarf, F. L., Tsurutani, B. T. and Smith, E. J. Jr., 1986 Plasma waves in the shock interaction regions at Comet Giacobini–Zinner. Geophys. Res. Lett. 13, 921924.Google Scholar
Khalilpour, H. and Foroutan, G. 2012 Beam propagation and Langmuir wave generation in a plasma with κ distribution function. Adv. Plan. Space Sci. 338, 4955.Google Scholar
Khotyaintsev, Y., Lizunov, G. and Stasiewicz, K. 2001 Langmuir wave structures registered by FREJA: analysis and modeling. Adv. Space Res. 28, 16491654.Google Scholar
Kim, E.-H., Cairns, I. H. and Robinson, P. A. 2008 Mode conversion of Langmuir to electromagnetic waves at magnetic field-aligned density inhomogeneities: simulations, theory, and applications to the solar wind and the corona. Phys. Plasmas 15 (10), 102110.Google Scholar
Kletzing, C. A., Bounds, S. R., LaBelle, J. and Samara, M. 2005 Observation of the reactive component of Langmuir wave phase-bunched electrons. Geophys. Res. Lett. 32, 5106.Google Scholar
Kojima, H., Furuya, H., Usui, H. and Matsumoto, H. 1997 Modulated electron plasma waves observed in the tail lobe: Geotail waveform observations. Geophys. Res. Lett. 24, 30493052.Google Scholar
Kontar, E. P. and Pécseli, H. L. 2002 Nonlinear development of electron-beam-driven weak turbulence in an inhomogeneous plasma. Phys. Rev. E 65 (6), 066408.Google Scholar
Krafft, C., Volokitin, A. S., Krasnoselskikh, V. V. and Dudok de Wit, L. 2014 Waveforms of Langmuir turbulence in inhomogeneous solar wind plasmas. J. Geophys. Res. Space Physics, 119, 93699382, doi:10.1002/2014JA020329.Google Scholar
Krall, N. A. and Trivelpiece, A. W. 1973 Principles of Plasma Physics. McGraw-Hill book company. McGraw-Hill Inc., US.Google Scholar
Krasnoselskikh, V. V., Lobzin, V. V., Musatenko, K., Soucek, J., Pickett, J. S. and Cairns, I. H. 2007 Beam-plasma interaction in randomly inhomogeneous plasmas and statistical properties of small-amplitude Langmuir waves in the solar wind and electron foreshock. J. Geophys. Res. (Space Phys.) 112, 10109.Google Scholar
Kurth, W. S., Barbosa, D. D., Gurnett, D. A. and Scarf, F. L. 1980 Electrostatic waves in the Jovian magnetosphere. Geophys. Res. Lett. 7, 5760.Google Scholar
Kurth, W. S., Gurnett, D. A., Scarf, F. L. and Barbosa, D. D. 1983 A survey of electrostatic waves in Saturn's magnetosphere. J. Geophys. Res. 88, 89598970.Google Scholar
Kurth, W. S., Gurnett, D. A., Scarf, F. L. and Mauk, B. H. 1989 Plasma waves in the magnetotail of Uranus. J. Geophys. Res. 94, 35053512.Google Scholar
LaBelle, J., Cairns, I. H. and Kletzing, C. A. 2010 Electric field statistics and modulation characteristics of bursty Langmuir waves observed in the cusp. J. Geophys. Res. (Space Phys.) 115, 10317.Google Scholar
Lacombe, C., Harvey, C. C., Hoang, S., Mangeney, A. and Steinberg, J. L. 1988 ISEE observations of radiation at twice the solar wind plasma frequency. Annales Geophysicae 6, 113128.Google Scholar
Lacombe, C., Mangeney, A. and Harvey, C. C. 1985 Electron plasma waves upstream of the Earth's bow shock. J. Geophys. Res. 90, 7394.CrossRefGoogle Scholar
Langmuir, I. 1928 Oscillations in ionized gases. Proc. Natl Acad. Sci. 14, 627637.CrossRefGoogle ScholarPubMed
Layden, A., Cairns, I. H., Li, B. and Robinson, P. A. 2013 Electrostatic decay in a weakly magnetized plasma. Phys. Rev. Lett. 110 (18), 185001.CrossRefGoogle Scholar
Lazar, M., Pierrard, V., Poedts, S. and Schlickeiser, R. 2012 Modeling space plasma dynamics with anisotropic Kappa distributions. In: Advances in Solid State Physics, Vol. 33 (ed. Leubner, M. P. and Vörös, Z.), p. 97. Springer-Verlag Berlin Heidelberg, doi:10.1007/978-3-642-30442-2_12.Google Scholar
Li, B. and Cairns, I. H. 2013 Type III radio bursts in coronal plasmas with kappa particle dDistributions. Astrophys. J. Lett. 763, L34.Google Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2008 Simulations of coronal type III solar radio bursts: 1. Simulation model. J. Geophys. Res. (Space Phys.) 113, 6104.Google Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2011a Effects of spatial variations in coronal electron and ion temperatures on type III bursts. II. Variations in ion temperature. Astrophys. J. 730, 21.Google Scholar
Li, B., Cairns, I. H. and Robinson, P. A. 2011b Effects of spatial variations in coronal temperatures on type III bursts. I. Variations in electron temperature. Astrophys. J. 730, 20.Google Scholar
Li, B., Robinson, P. A. and Cairns, I. H. 2006 Numerical modeling of type III solar radio bursts in the inhomogeneous solar corona and interplanetary medium. Phys. Plasmas 13 (9), 092902.CrossRefGoogle Scholar
Lin, N., Kellogg, P. J., MacDowall, R. J., Tsurutani, B. T. and Ho, C. M. 1996 Langmuir waves associated with discontinuities in the solar wind: a statistical study. Astron. Astrophys. 316, 425429.Google Scholar
Lin, R. P. 2011 Energy release and particle acceleration in flares: summary and future prospects. Space Sci. Rev. 159, 421445.CrossRefGoogle Scholar
Lin, R. P., Levedahl, W. K., Lotko, W., Gurnett, D. A. and Scarf, F. L. 1986 Evidence for nonlinear wave–wave interactions in solar type III radio bursts. Astrophys. J. 308, 954965.Google Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A. and Scarf, F. L. 1981 Energetic electrons and plasma waves associated with a solar type III radio burst. Astrophys. J. 251, 364373.Google Scholar
Lizunov, G. V., Khotyaintsev, Y. and Stasiewicz, K. 2001 Parametric decay to lower hybrid waves as a source of modulated Langmuir waves in the topside ionosphere. J. Geophys. Res. 106, 24 75524 764.Google Scholar
Luhmann, J. G., Ledvina, S. A. and Russell, C. T. 2004 Induced magnetospheres. Adv. Space Res. 33, 19051912.Google Scholar
MacDowall, R. J., Hess, R. A., Lin, N. and Thejappa, G. 1997 Plasma wave observations from the ULYSSES spacecraft's fast heliographic latitude scan. Adv. Space Res. 19, 873876.Google Scholar
MacDowall, R. J., Lin, N., Kellogg, P. J., Balogh, A., Forsyth, R. J. and Neugebauer, M. 1996 Langmuir waves in magnetic holes: source mechanism and consequences. In: Proceedings of the eigth international solar wind conference: Solar wind eight, AIP Conference Proceedings, Vol. 382 (ed. Winterhalter, D., Gosling, J. T., Habbal, S. R., Kurth, W. S. and Neugebauer, M.), pp. 301–304.Google Scholar
MacDowall, R. J., Lin, N., Kellogg, P. J., Phillips, J. L., Neugebauer, M., Balogh, A. and Forsyth, R. J. 1995 Properties of Langmuir wave bursts associated with magnetic holes. In: Solar Wind Eight, NASA Goddard Space Flight Center, International Solar Wind 8 Conference, p. 75.Google Scholar
MacDowall, R. J., Lin, N. and McComas, D. J. 2001 Langmuir wave activity: comparing the Ulysses solar minimum and solar maximum orbits. Space Sci. Rev. 97, 141146.Google Scholar
MacDowall, R. J., Lin, N. and McComas, D. J. 2003 Heliospheric Langmuir wave observations from the Ulysses spacecraft. Adv. Space Res. 32, 479483.Google Scholar
Maksimovic, M., Pierrard, V. and Riley, P. 1997 Ulysses electron distributions fitted with Kappa functions. Geophys. Res. Lett. 24, 11511154.Google Scholar
Malaspina, D. M., Kellogg, P. J., Bale, S. D. and Ergun, R. E. 2010 Measurements of Rapid Density Fluctuations in the Solar Wind. Astrophys. J. 711, 322327.Google Scholar
Manoharan, P. K., Kojima, M. and Misawa, H. 1994 The spectrum of electron density fluctuations in the solar wind and its variations with solar wind speed. J. Geophys. Res. 99, 23411.Google Scholar
Marsch, E., Schwenn, R., Rosenbauer, H., Muehlhaeuser, K.-H., Pilipp, W. and Neubauer, F. M. 1982 Solar wind protons - Three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J. Geophys. Res. 87, 5272.Google Scholar
McAdams, K. L., Ergun, R. E. and LaBelle, J. 2000 HF chirps: eigenmode trapping in density depletions. Geophys. Res. Lett. 27, 321324.Google Scholar
McFadden, J. P., Carlson, C. W. and Boehm, M. H. 1986 High-frequency waves generated by auroral electrons. J. Geophys. Res. 91, 12 07912 088.Google Scholar
Melrose, D. B. 1976 Effects of an Ambient Magnetic Field on the Properties of Langmuir Waves (extended summary). Sol. Phys. 46, 511513.Google Scholar
Musatenko, K., Lobzin, V., Soucek, J., Krasnoselskikh, V. V. and Décréau, P. 2007 Statistical properties of small-amplitude Langmuir waves in the Earth's electron foreshock. Planet. Space Sci. 55, 22732280.Google Scholar
Muschietti, L., Goldman, M. V. and Newman, D. 1985 Quenching of the beam-plasma instability by large-scale density fluctuations in 3 dimensions. Sol. Phys. 96, 181198.CrossRefGoogle Scholar
Mushtaq, A. and Shah, H. A. 2006 Study of non-Maxwellian trapped electrons by using generalized (r,q) distribution function and their effects on the dynamics of ion acoustic solitary wave. Phys. Plasmas 13 (1), 012303.Google Scholar
Pal Singh, K., Robinson, P. A., Cairns, I. H. and Tyshetskiy, Y. 2012 Propagation of radiation in fluctuating multiscale plasmas. II. Kinetic simulations. Phys. Plasmas 19 (11), 113304.Google Scholar
Papadopoulos, K. 2009 Waves and instabilities in space plasmas. In: Turbulence in Space Plasmas, Vol. 778 (ed. Cargill, P. and Vlahos, L.), Lecture Notes in Physics, Berlin Springer-Verlag, p. 143.Google Scholar
Pierrard, V. and Lazar, M. 2010 Kappa distributions: theory and applications in space plasmas. Sol. Phys. 267, 153174.Google Scholar
Pilipp, W. G., Muehlhaeuser, K.-H., Miggenrieder, H., Montgomery, M. D. and Rosenbauer, H. 1987a Characteristics of electron velocity distribution functions in the solar wind derived from the HELIOS plasma experiment. J. Geophys. Res. 92, 10751092.Google Scholar
Pilipp, W. G., Muehlhaeuser, K.-H., Miggenrieder, H., Rosenbauer, H. and Schwenn, R. 1987b Variations of electron distribution functions in the solar wind. J. Geophys. Res. 92, 11031118.Google Scholar
Pulupa, M. P., Bale, S. D. and Kasper, J. C. 2010 Langmuir waves upstream of interplanetary shocks: dependence on shock and plasma parameters. J. Geophys. Res. (Space Phys.) 115, 4106.Google Scholar
Pulupa, M. P., Bale, S. D. and Salem, C. 2011 An asymmetry of the electron foreshock due to the strahl. Geophys. Res. Lett. 38, 14105.Google Scholar
Qureshi, M. N. S., Shi, J. K. and Ma, S. Z. 2005 Landau damping in space plasmas with generalized (r,q) distribution function. Phys. Plasmas 12 (12), 122902.Google Scholar
Ratcliffe, H., Brady, C. S., Che Rozenan, M. B. and Nakariakov, V. 2014 A comparison of weak-turbulence and PIC simulations of weak electron-beam plasma interaction. Physics of Plasmas, 21, 122104, doi:10.1063/1.490406.Google Scholar
Reames, D. V. 1999 Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90, 413491.Google Scholar
Reid, H. A. S. and Ratcliffe, H. 2014 A review of solar type III radio bursts. Res. Astron. Astrophys. 14, 773804.Google Scholar
Robinson, P. A. 1992 Clumpy Langmuir waves in type III radio sources. Sol. Phys. 139, 147163.Google Scholar
Robinson, P. A. 1997a Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507573.Google Scholar
Robinson, P. A. 1997b Stochastic wave growth in scattering media. Phys. Rev. B 55, 12 17512 181.Google Scholar
Robinson, P. A. and Cairns, I. H. 1995 Maximum Langmuir fields in planetary foreshocks determined from the electrostatic decay threshold. Geophys. Res. Lett. 22, 26572660.Google Scholar
Samara, M., Labelle, J. and Cairns, I. H. 2008 Statistics of auroral Langmuir waves. Ann. Geophys. 26, 38853895.Google Scholar
Scarf, F. L. 1971 Pioneer 8 plasma-wave measurements at distant bow-shock crossings. J. Geophys. Res. 76, 7769.Google Scholar
Schlatter, N. M., Ivchenko, N. and Häggström, I. 2014 On the relation of Langmuir turbulence radar signatures to auroral conditions. J. Geophys. Res. (Space Phys.) 119, 84998511.Google Scholar
Schleyer, F., Cairns, I. H. and Kim, E.-H. 2013 Linear mode conversion of Langmuir/z-mode waves to radiation: scalings of conversion efficiencies and propagation angles with temperature and magnetic field orientation. Phys. Plasmas 20 (3), 032101.Google Scholar
Schmit, P. F., Mooney, C. R., Dodin, I. Y. and Fisch, N. J. 2011 Evolution of the bump-on-tail instability in compressing plasma. J. Plasma Phys. 77, 629638.Google Scholar
Shapiro, V. D. and Sagdeev, R. Z. 1997 Nonlinear wave-particle interaction and conditions for the applicability of quasilinear theory. Phys. Rep. 283, 4971.Google Scholar
Shoucri, M. 2011 Numerical Simulation of the Bump-on-Tail Instability. In Numerical Simulations - Applications, Examples and Theory (ed. Prof. Angermann, Lutz). InTech. ISBN 978-953-307-440-5.Google Scholar
Sigsbee, K., Kletzing, C. A., Pickett, J. S., Gurnett, D. A., Schwartz, S. J., Lefebvre, B., Lucek, E., Fazakerley, A. N. and Kucharek, H. 2010 Characteristics of Langmuir electric field waveforms and power spectra exhibiting nonlinear behavior in Earth's foreshock. J. Geophys. Res. (Space Phys.) 115, 10251.Google Scholar
Skal'Skii, A., Grard, R., Klimov, S., Nairn, C. M. C., Trotignon, J. G. and Schwingenschuh, K. 1992 The Martian bow shock – Wave observations in the upstream region. J. Geophys. Res. 97, 29272933.Google Scholar
Smith, D. F. and Sime, D. 1979 Origin of plasma-wave clumping in type III solar radio burst sources. Astrophys. J. 233, 9981004.Google Scholar
Soucek, J., Krasnoselskikh, V., Dudok de Wit, T., Pickett, J. and Kletzing, C. 2005 Nonlinear decay of foreshock Langmuir waves in the presence of plasma inhomogeneities: theory and cluster observations. J. Geophys. Res. (Space Phys.) 110, 8102.Google Scholar
Stasiewicz, K., Holback, B., Krasnoselskikh, V., Boehm, M., Boström, R. and Kintner, P. M. 1996 Parametric instabilities of Langmuir waves observed by Freja. J. Geophys. Res. 101, 21 51521 526.Google Scholar
Stevens, M. L. and Kasper, J. C. 2007 A scale-free analysis of magnetic holes at 1 AU. J. Geophys. Res. (Space Phys.) 112, A05109, doi:10.1029/2006JA012116.Google Scholar
Strangeway, R. J. 2004 Plasma waves and electromagnetic radiation at Venus and Mars. Adv. Space Res. 33, 19561967.Google Scholar
Sturrock, P. A. 1964 Type III solar radio bursts. In: The Physics of Solar Flares (ed. W. N. Hess), pp. 357–364.Google Scholar
Summers, D., Xue, S. and Thorne, R. M. 1994 Calculation of the dielectric tensor for a generalized Lorentzian (kappa) distribution function. Phys. Plasmas 1, 20122025.Google Scholar
Thejappa, G. and MacDowall, R. J. 2000 Langmuir waves in the vicinity of interplanetary shocks and the consequences for type II burst models. Astrophys. J. Lett. 544, L163L167.Google Scholar
Treumann, R. A. 2009 Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys.r 17, 409535.Google Scholar
Treumann, R. A. and Terasawa, T. 2001 Electron acceleration in the heliosphere. Space Sci. Rev. 99, 135150.Google Scholar
Trotignon, J. G., Grard, R. and Savin, S. 1991 Plasma wave system measurements of the Martian bow shock from the PHOBOS 2 spacecraft. J. Geophys. Res. 96, 11253.Google Scholar
Trotignon, J. G., Skalsky, A., Grard, R., Nairn, C. and Klimov, S. 1992 Electron density in the Martian foreshock as a by-product of the electron plasma oscillation observations. J. Geophys. Res. 97, 10831.Google Scholar
Turner, J. M., Burlaga, L. F., Ness, N. F. and Lemaire, J. F. 1977 Magnetic holes in the solar wind. J. Geophys. Res. 82, 19211924.Google Scholar
Umeda, T. and Ito, T. 2008 Vlasov simulation of Langmuir decay instability. Phys. Plasmas 15 (8), 084503.Google Scholar
Vernazza, P., Binzel, R. P., Rossi, A., Fulchignoni, M. and Birlan, M. 2009 Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993995.Google Scholar
Went, D. R., Hospodarsky, G. B., Masters, A., Hansen, K. C. and Dougherty, M. K. 2011 A new semiempirical model of Saturn's bow shock based on propagated solar wind parameters. J. Geophys. Res. (Space Phys.) 116, 7202.Google Scholar
Willes, A. J. and Cairns, I. H. 2000 Generalized Langmuir waves in magnetized kinetic plasmas. Phys. Plasmas 7, 31673180.Google Scholar
Willes, A. J. and Cairns, I. H. 2003 Banded frequency structure from linear mode conversion in inhomogeneous plasmas. Phys. Plasmas 10, 40724078.Google Scholar
Yoon, P. H. 2014 Electron kappa distribution and quasi-thermal noise. J. Geophys. Res. (Space Phys.) 119, 70747087.Google Scholar
Yoon, P. H., Hong, J., Kim, S., Lee, J., Lee, J., Park, J., Park, K. and Seough, J. 2012 Asymmetric solar wind electron distributions. Astrophys. J. 755, 112.Google Scholar
Yoon, P. H. and Labelle, J. 2005 Discrete Langmuir waves in density structure. J. Geophys. Res. (Space Phys.) 110, 11308.Google Scholar
Zaheer, S., Murtaza, G. and Shah, H. A. 2004 Some electrostatic modes based on non-Maxwellian distribution functions. Phys. Plasmas 11, 22462255.Google Scholar
Zarka, P. 2004 Radio and plasma waves at the outer planets. Adv. Space Res. 33, 20452060.Google Scholar
Zheng, H., Fu, S. Y., Zong, Q. G., Pu, Z. Y., Wang, Y. F. and Parks, G. K. 2012 Observations of ionospheric electron beams in the plasma sheet. Phys. Rev. Lett. 109 (20), 205001.Google Scholar
Ziebell, L. F., Yoon, P. H., Gaelzer, R. and Pavan, J. 2014 Plasma Emission by Weak Turbulence Processes. Astrophys. J. Lett. 795, L32.Google Scholar
Zouganelis, I., Meyer-Vernet, N., Landi, S., Maksimovic, M. and Pantellini, F. 2005 Acceleration of weakly collisional solar-type winds. Astrophys. J. Lett. 626, L117L120.Google Scholar