Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T03:45:30.368Z Has data issue: false hasContentIssue false

Lifting of the Vlasov–Maxwell bracket by Lie-transform method

Published online by Cambridge University Press:  14 December 2016

A. J. Brizard*
Affiliation:
Department of Physics, Saint Michael’s College, Colchester, VT 05439, USA
P. J. Morrison
Affiliation:
Department of Physics and Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA
J. W. Burby
Affiliation:
Courant Institute of Mathematical Sciences, New York, NY 10012, USA
L. de Guillebon
Affiliation:
Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille, France
M. Vittot
Affiliation:
Aix Marseille Univ., Univ. Toulon, CNRS, CPT, Marseille, France
*
Email address for correspondence: abrizard@smcvt.edu

Abstract

The Vlasov–Maxwell equations possess a Hamiltonian structure expressed in terms of a Hamiltonian functional and a functional bracket. In the present paper, the transformation (‘lift’) of the Vlasov–Maxwell bracket induced by the dynamical reduction of single-particle dynamics is investigated when the reduction is carried out by Lie-transform perturbation methods. The ultimate goal of this work is to provide an explicit pathway to the Hamiltonian formulations for the guiding-centre and gyrokinetic Vlasov–Maxwell equations, which have found important applications in our understanding of turbulent magnetized plasmas. Here, it is shown that the general form of the reduced Vlasov–Maxwell equations possesses a Hamiltonian structure defined in terms of a reduced Hamiltonian functional and a reduced bracket that automatically satisfies the standard bracket properties.

Type
Research Article
Copyright
© Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brizard, A. J. 2000a A new variational principle for Vlasov–Maxwell equations. Phys. Rev. Lett. 84, 57685771.Google Scholar
Brizard, A. J. 2000b Variational principle for nonlinear gyrokinetic Vlasov–Maxwell equations. Phys. Plasmas 7, 48164822.CrossRefGoogle Scholar
Brizard, A. J. 2008 On the dynamical reduction of the Vlasov equation. Commun. Nonlinear Sci. Numer. Simul. 13, 2433.Google Scholar
Brizard, A. J. 2009 Variational principles for reduced plasma physics. J. Phys.: Conf. Ser. 169, 012003.Google Scholar
Brizard, A. J. 2013 Beyond linear gyrocenter polarization in gyrokinetic theory. Phys. Plasmas 20, 092309.Google Scholar
Brizard, A. J. & Hahm, T. S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79, 421468.Google Scholar
Brizard, A. J. & Tronci, C. 2016 Variational formulations of guiding-center Vlasov–Maxwell theory. Phys. Plasmas 23, 062107.CrossRefGoogle Scholar
Burby, J. W., Brizard, A. J., Morrison, P. J. & Qin, H. 2015a Hamiltonian formulation of the gyrokinetic Vlasov–Maxwell equations. Phys. Lett. A 379, 20732077.CrossRefGoogle Scholar
Burby, J. W., Brizard, A. J. & Qin, H. 2015b Energetically-consistent collisional gyrokinetics. Phys. Plasmas 22, 100707.CrossRefGoogle Scholar
Cary, J. R. & Brizard, A. J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81, 693738.Google Scholar
Chandre, C., de Guillebon, L., Back, A., Tassi, E. & Morrison, P. J. 2013 On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets. J. Phys. A 46, 125203.Google Scholar
Chandre, C., Morrison, P. J. & Tassi, E. 2012 On the Hamiltonian formulation of incompressible ideal fluids and magnetohydrodynamics via Dirac’s theory of constraints. Phys. Lett. A 376, 737743.Google Scholar
Garbet, X., Idomura, Y., Villard, L. & Watanabe, T. H. 2010 Gyrokinetic simulations of turbulent transport. Nucl. Fusion 50, 043002.Google Scholar
Krommes, J. A. 2012 The gyrokinetic description of microturbulence in magnetized plasmas. Annu. Rev. Fluid Mech. 44, 175201.Google Scholar
Littlejohn, R. G. 1982 Hamiltonian perturbation theory in noncanonical coordinates. J. Math. Phys. 23, 742747.Google Scholar
Littlejohn, R. G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29, 111125.Google Scholar
Marsden, J. E. & Weinstein, A. 1982 The Hamiltonian structure of the Maxwell–Vlasov equations. Physica D 4, 394406.Google Scholar
Morrison, P. J. 1980 The Maxwell–Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80, 383386.Google Scholar
Morrison, P. J. 1982 Poisson brackets for fluids and plasmas. AIP Conf. Proc. 88, 1346.Google Scholar
Morrison, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467521.Google Scholar
Morrison, P. J. 2005 Hamiltonian and action principle formulations of plasma physics. Phys. Plasmas 12, 058102.Google Scholar
Morrison, P. J. 2013 A general theory for gauge-free lifting. Phys. Plasmas 20, 012104.Google Scholar
Morrison, P. J. & Greene, J. M. 1980 Noncanonical Hamiltonian density formulation of hydrodynamics and ideal magnetohydrodynamics. Phys. Rev. Lett. 45, 790793.Google Scholar
Morrison, P. J., Lebovitz, N. R. & Biello, J. 2009 The Hamiltonian description of incompressible fluid ellipsoids. Ann. Phys. 324, 17471762.Google Scholar
Morrison, P. J. & Vanneste, J. 2016 Weakly nonlinear dynamics in noncanonical Hamiltonian systems with applications to fluids and plasmas. Ann. Phys. 368, 17147.Google Scholar
Morrison, P. J., Vittot, M. & de Guillebon, L. 2013 Lifting particle coordinate changes of magnetic moment type to Vlasov–Maxwell Hamiltonian dynamics. Phys. Plasmas 20, 032109.Google Scholar
Pfirsch, D. 1984 New variational formulation of Maxwell–Vlasov and guiding center theories local charge and energy conservation laws. Z. Naturforsch. A 39, 18.Google Scholar
Pfirsch, D. & Morrison, P. J. 1985 Local conservation laws for the Maxwell–Vlasov and collisionless guiding-center theories. Phys. Rev. A 32, 17141721.CrossRefGoogle ScholarPubMed
Squire, J., Qin, H., Tang, W. M. & Chandre, C. 2013 The Hamiltonian structure and Euler–Poincaré formulation of the Vlasov–Maxwell and gyrokinetic systems. Phys. Plasmas 20, 022501.CrossRefGoogle Scholar
Tronko, N. & Brizard, A. J. 2015 Lagrangian and Hamiltonian constraints for guiding-center Hamiltonian theories. Phys. Plasmas 22, 112507.Google Scholar
Viscondi, T. F., Caldas, I. L. & Morrison, P. J. 2016 A method for Hamiltonian truncation: a four-wave example. J. Phys. A 49, 165501.Google Scholar