Published online by Cambridge University Press: 13 March 2009
The linear growth rate of the crossfield current-driven ion-acoustic instability is obtained for any equilibrium particle velocity distribution function of the type . Quasi-linear theory is then used to investigate the saturation of the instability. Several associated features, namely, particle diffusion in velocity space, anomalous resistivity, energy distribution and electron and ion heating rates are evaluated for a Maxwellian distribution. Finally, a brief comparison is made with the heating rates associated with the electron cyclotron drift instability.