Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:04:24.713Z Has data issue: false hasContentIssue false

Linearized theory of inhomogeneous multiple ‘water-bag’ plasmas

Published online by Cambridge University Press:  13 March 2009

H. W. Bloomberg
Affiliation:
Department of Physics, College of William and Mary, Williamsburg, Virginia
H. L. Berk
Affiliation:
Lawrence Livermore Laboratory, University of California, Livermore

Abstract

The problem of the stability of inhomogeneous, electrostatic, multiple water-bag plasmas is considered. Equations are derived for general stationary water-bag equilibria, as well as for the corresponding perturbations. Particular attention is directed to systems with trapped particles in periodic equilibria, and special boundary conditions for the perturbation equations at the trapped-particle turning points are introduced. A normal-mode analysis is carried out for a configuration involving trapped particles occupying a finite region in the vicinity of the trough of an equilibrium wave (BGK mode). The results confirm the validity of the bunched-beam approximation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berk, H. L. & Roberts, K. V. 1967 Phys. Fluids, 10, 1595.CrossRefGoogle Scholar
Bertrand, P. & Feix, M. R. 1968 Phys. Lett. A 28, 68.CrossRefGoogle Scholar
Bertrand, P., Doremus, J. P., Baumann, G. & Feix, M. R. 1972 Phys. Fluids, 15, 1275.CrossRefGoogle Scholar
Bud'ko, N. I., Karpman, V. I. & Shklyar, D. R. 1972 Soviet Phys. JETP, 34, 778.Google Scholar
Davidson, R. C. 1972 Methods in Nonlinear Plasma Theory, Academic.Google Scholar
Franklin, R. N., Hamberger, S. M., Ikezi, H., Lampis, G. & Smith, G. J. 1972 Phys. Rev. Lett. 28, 1114.CrossRefGoogle Scholar
Goldman, M. V. 1970 Phys. Fluids, 13, 1281.CrossRefGoogle Scholar
Goldman, M. & Berk, H. 1971 Phys. Fluids, 14, 801.CrossRefGoogle Scholar
Kalman, G. 1960 Ann. Phys. (N.Y.), 10, 1.CrossRefGoogle Scholar
Kruer, W. L., Dawson, J. M. & Sudan, R. N. 1969 Phys. Lett. Rev. 23, 838.CrossRefGoogle Scholar
Mima, K. & Nishikawa, K. 1971 J. Phys. Soc. Japan, 30, 1722.CrossRefGoogle Scholar
Montgomery, D. 1960 Phys. Fluids, 3, 274.CrossRefGoogle Scholar
Van Wakeren, J. H. A. & Hopman, H. J. 1972 Phys. Rev. Lett. 28, 295.CrossRefGoogle Scholar
Wharton, C. B., Malmberg, J. H. & O'Neil, T. M. 1968 Phys. Fluids, 11, 1761.CrossRefGoogle Scholar
Wong, H. V. 1972 Phys. Fluids, 15, 632.CrossRefGoogle Scholar