Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:28:01.799Z Has data issue: false hasContentIssue false

Low-frequency electrostatic defect mode in doped pair-ion plasmas

Published online by Cambridge University Press:  22 January 2010

I. KOURAKIS
Affiliation:
Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, UK (i.kourakis@qub.ac.uk)
N. S. SAINI
Affiliation:
Centre for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN, UK (i.kourakis@qub.ac.uk)

Abstract

The nonlinear amplitude modulation dynamics of electrostatic oscillations of massive charged defects in a three-component pair plasma is investigated, i.e. doped pair-ion plasmas (anticipating the injection of a massive charged component in the background, e.g. in fullerene experiments). Ion-acoustic oscillations in electron-positron-ion (e-p-i) plasmas are also covered, in the appropriate limit. Linear and nonlinear effects (MI, envelope modes) are discussed. The role of the temperature and density ratio between the pair species is stressed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Iwamoto, N. 1993 Collective modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 47, 604611.CrossRefGoogle ScholarPubMed
[2]Zank, G. P. and Greaves, R. G. 1995 Linear and nonlinear modes in nonrelativistic electron-positron plasmas. Phys. Rev. E 51, 60796090.CrossRefGoogle ScholarPubMed
[3]Oohara, W. and Hatakeyama, R. 2003 Pair-ion plasma generation using fullerenes. Phys. Rev. Lett. 91, 205005/1–4; Oohara, W., Date, D. and Hatakeyama, R. 2005 Electrostatic waves in a paired fullerene-ion plasma. Phys. Rev. Lett. 95, 175003/1–4; Hatakeyama, R. and Oohara, W. 2005 Properties of pair-ion plasmas using fullerenes. Phys. Scr. 116, 101–104.CrossRefGoogle ScholarPubMed
[4]Miller, H. R. and Witta, P. J. 1987 Active Galactic Nuclei. Berlin, Germany: Springer-Verlag, p. 202.Google Scholar
[5]Michel, F. C. 1982 Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 166.CrossRefGoogle Scholar
[6]Greaves, R. G. and Surko, C. M. 1995 An electron-positron beam-plasma experiment. Phys. Rev. Lett. 75, 3846; Berezhiani, V. I., Tskhakaya, D. D. and Shukla, P. K. 1992 Pair production in a strong wake field driven by an intense short laser pulse. Phys. Rev. A 46, 6608; Surko, C. M., Levelhal, M., Crane, W. S., Passne, A. and Wysocki, F. 1986 Use of positrons to study transport in tokamak plasmas. Rev. Sci. Instrum 57, 1862; Surko, C. M. and Murphay, T. 1990 Use of the positron as a plasma particle. Phys. Fluid B 2, 1372–1375.CrossRefGoogle ScholarPubMed
[7]Kourakis, I., Esfandyari-Kalejahi, A., Mehdipoor, M. and Shukla, P. K. 2006 Modulated electrostatic modes in pair plasmas: modulational stability profile and envelope excitations. Phys. Plasmas 13, 052117; Esfandyari-Kalejahi, A., Kourakis, I. and Shukla, P. K. 2006 Oblique modulation of electrostatic modes and envelope excitations in pair-ion and electron-positron plasmas. Phys. Plasmas 13, 122310/1–9.CrossRefGoogle Scholar
[8]Esfandyari-Kalejahi, A., Kourakis, I., Mehdipoor, M. and Shukla, P. K. 2006 Electrostatic mode envelope excitations in e-p-i plasmas application in warm pair ion plasmas with a small fraction of stationary ions. J. Phys. A: Math. Gen. 39, 1381713830.CrossRefGoogle Scholar
[9]Verheest, F. 2006 Existence of bulk acoustic modes in pair plasmas. Phys. Plasmas 13, 082301.CrossRefGoogle Scholar
[10]Saleem, H., Vranjes, J. and Poedts, S. 2006 On some properties of linear and nonlinear waves in pair-ion plasmas. Phys. Lett. A 350, 375379.CrossRefGoogle Scholar
[11]Schamel, H. and Luque, A. 2005 Kinetic theory of periodic hole and double layer equilibria in pair plasmas. New J. Phys. 7, 69/1–9; Schamel, H. 2008 Ion holes in dusty pair plasmas. J. Plasma Phys. 74, 725–731.CrossRefGoogle Scholar
[12]Lazarus, I. J., Bharuthram, R. and Hellberg, M. A. 2008 Modified Korteweg-de Vries-Zakharov-Kuznetsov solitons in symmetric two-temperature electron-positron plasmas. J. Plasma Phys. 74, 519529.CrossRefGoogle Scholar
[13]Kourakis, I., Moslem, W. M., Abdelsalam, U. M., Sabry, R. and Shukla, P. K. 2009 Nonlinear dynamics of rotating multi-component pair plasmas and e-p-i plasmas. Plasma and Fusion Research 4, 018/1–11.CrossRefGoogle Scholar
[14]Verheest, F. and Cattaert, T. 2005 Oblique propagation of large amplitude electromagnetic solitons in pair plasmas. Phys. Plasmas 12, 032304.CrossRefGoogle Scholar
[15]Kourakis, I., Verheest, F. and Cramer, N. 2007 Nonlinear perpendicular propagation of ordinary mode electromagnetic wave packets in pair-ion and electron-positron-ion plasmas. Phys. Plasmas 14, 022306/1–10.CrossRefGoogle Scholar
[16]Salahuddin, M., Saleem, H. and Saddiq, M. 2002 Ion-acoustic envelope solitons in electron-positron-ion plasmas. Phys. Rev. E 66, 036407/1–4.CrossRefGoogle ScholarPubMed
[17]Jehan, N., Salahuddin, M., Saleem, H. and Mirza, A. M. 2008 Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys. Plasmas 15, 092301.CrossRefGoogle Scholar
[18]Kourakis, I. and Shukla, P. K. 2004 Oblique amplitude modulation of dust-acoustic plasma waves. Phys. Scripta 69, 316327.CrossRefGoogle Scholar
[19]Kourakis, I. and Shukla, P. K. 2005 Exact theory for localized envelope modulated electrostatic wavepackets in space and dusty plasmas. Nonlin. Proc. Geophys. 12, 407423.CrossRefGoogle Scholar
[20]Lee, M.-J. 2007 Landau damping of dust acoustic waves in a Lorentzian plasma. Phys. Plasmas 14, 032112.CrossRefGoogle Scholar