Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:39:46.606Z Has data issue: false hasContentIssue false

Macro-quantization of the guiding centre motion of charged particles in a magnetic field

Published online by Cambridge University Press:  09 October 2012

RAM K. VARMA*
Affiliation:
Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, Gujarat, India (ramkvarma@gmail.com)

Abstract

This review describes the results of investigations on charged particle dynamics in a magnetic field carried out over a number of years. The studies have unravelled the existence of some very surprising and unusual phenomena. Though existing on the macro-scale, they are found to be of quantum origin, and are thereby not covered by the Lorentz equation, which has been regarded conventionally as the descriptor of electrodynamic phenomena on the macro-scale. These novel phenomena have been found to be attributed to the ‘quantum modulation’ of the de Broglie wave along the magnetic field. This is brought about through the scattering-induced transition across Landau levels, leading to the modulation of the plane wave state along the field as a result of the entanglement between the parallel and perpendicular degrees of freedom. These findings were motivated by the predictions of a formalism developed by the author and include such unusual phenomena as (i) macro-scale matter wave interference effects and (ii) the detection of curl-free vector potential also on the macro-scale, both attributed to quantum modulation which is a matter wave on the macro-scale. The formalism is thus described as ‘macro-quantization of guiding centre motion’.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, V. I. 1963 Uspekhi Akad. Nauk SSSR 18, 91 [Russian Math Surveys, 18, 86].Google Scholar
Bora, D., John, P. I., Saxena, Y. N. and Varma, R. K. 1979 Phys. Lett. A 75, 6062.CrossRefGoogle Scholar
Bora, D., John, P. I., Saxena, Y. N. and Varma, R. K. 1980 Plasma Phys. 22, 652662.CrossRefGoogle Scholar
Bora, D., John, P. I., Saxena, Y. N. and Varma, R. K. 1982 Phys. Fluids 25, 22842288.CrossRefGoogle Scholar
Chirikov, B. V. 1978 Fiz. Plazmy 4, 521541 [Sov. J. Plasma Phys. 4, 289–300].Google Scholar
Chirikov, B. V. 1979 Phys. Rep. 52, 264379.CrossRefGoogle Scholar
Chirikov, B. V. 1984 Particle dynamics in magnetic traps. In: Voprosy Teorii Plazmy by Energoatomizdat, Moscow, English Trans., Reviews of Plasma Physics (1987). New York-London: Consultants Bureau.Google Scholar
Dubinina, A. N., Krasitskaya, L. S. and Yudin, Yu N. 1969 Plasma Phys. 11, 551564.CrossRefGoogle Scholar
Ito, A. and Yoshida, Z. 2001 Phys. Rev. E 63, 026503 (15).Google Scholar
Northrop, T. G. 1963 Adiabatic Motion of Charged Particles. New York: Interscience.CrossRefGoogle Scholar
Unnikrishnan, C. S. 1999 Current Sci. 76, 413422.Google Scholar
Unnikrishnan, C. S. 2004 Phys. Rev. E 70, 028501 (15).Google Scholar
Unnikrishnan, C. S. and Safvan, C. P. 1999 Mod. Phys. Lett. 14, 479490.CrossRefGoogle Scholar
Varma, R. K. 1971 Phys. Rev. Lett. 26, 417420.CrossRefGoogle Scholar
Varma, R. K. 1985 Phys. Rev. A 31, 39513959.CrossRefGoogle Scholar
Varma, R. K. 1994 Mod. Phys. Lett. A 9, 36533661.CrossRefGoogle Scholar
Varma, R. K. 2001 Phys. Rev. E 64, 036608 (110); Erratum, 2002 Phys. Rev. E 65, 019904.Google Scholar
Varma, R. K. 2003 Phys. Rep 378, 301434.CrossRefGoogle Scholar
Varma, R. K. 2007 Pramana J. Phys. 69, 901911.CrossRefGoogle Scholar
Varma, R. K. 2010a J. Plasma Phys. 76, 355367.CrossRefGoogle Scholar
Varma, R. K. 2010b Pramana J. Phys. 74, 491511.CrossRefGoogle Scholar
Varma, R. K. 2012 Eur. Phys. J. D 66, 39 (112).Google Scholar
Varma, R. K. and Banerjee, S. B. 2007 Phys. Scr. 75, 1928.CrossRefGoogle Scholar
Varma, R. K. and Punithavelu, A. M. 1993a Mod. Phys. Lett. A 8, 167176.CrossRefGoogle Scholar
Varma, R. K. and Punithavelu, A. M. 1993b Mod. Phys. Lett. A 8, 38233834.CrossRefGoogle Scholar
Varma, R. K., Banerjee, S. B. and Ambastha, A. 2012 Eur. Phys. J. D 66, 38 (111).Google Scholar
Varma, R. K., Punithavelu, A. M. and Banerjee, S. B. 2002a Phys. Lett. A 303, 114120.CrossRefGoogle Scholar
Varma, R. K., Punithavelu, A. M. and Banerjee, S. B. 2002b Phys. Rev. E 65, 026503 (19).Google Scholar
Varma, R. K., Punithavelu, A. M. and Banerjee, S. B. 2004 Phys. Rev. E 70, 028502 (17).Google Scholar