Article contents
Mean-field theory of differential rotation in density stratified turbulent convection
Published online by Cambridge University Press: 23 April 2018
Abstract
A mean-field theory of differential rotation in a density stratified turbulent convection has been developed. This theory is based on the combined effects of the turbulent heat flux and anisotropy of turbulent convection on the Reynolds stress. A coupled system of dynamical budget equations consisting in the equations for the Reynolds stress, the entropy fluctuations and the turbulent heat flux has been solved. To close the system of these equations, the spectral $\unicode[STIX]{x1D70F}$ approach, which is valid for large Reynolds and Péclet numbers, has been applied. The adopted model of the background turbulent convection takes into account an increase of the turbulence anisotropy and a decrease of the turbulent correlation time with the rotation rate. This theory yields the radial profile of the differential rotation which is in agreement with that for the solar differential rotation.
- Type
- Research Article
- Information
- Copyright
- © Cambridge University Press 2018
References
- 5
- Cited by