Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T11:06:30.278Z Has data issue: false hasContentIssue false

Measurement of microwave reflexion from a longitudinally magnetized plasma-filed co-axial wave-guide

Published online by Cambridge University Press:  13 March 2009

M. L. G. Oldfield
Affiliation:
Engineering Laboratory, Oxford University
R. N. Franklin
Affiliation:
Engineering Laboratory, Oxford University

Abstract

The voltage refiexion coefficient from a vacuum-plasma boundary in a co-axial transmission line with an axial magnetic field B0 applied has been measured. The results agree well with a previously published theory for conditions where the microwave-, plasma-, electron collision-, and electron cyclotron-frequencies are of the same order. A 9 GHz co-axial microwave probe is mounted along the axis of a 44mm diameter, hydrogen driven, dry air filled, shock tube in an axial d.c. magnetic field. Shock ionized air (Ms = 9–14, T 4000 °K, electron density nc = 1017 to 3 x 1019 m−3, initial pressure p0 = 1–10 Torr, electron collision frequency v = 1010 to 1011/S) fills the coaxial line and partially reflects a microwave signal. Initially this probe, and a similar rectangular waveguide probe, were used with B0 = 0 to calibrate the plasma (ne, v) in terms of the shock tube parameters (p0, Ms). Measurement of the saturated-ion current to electrostatic probes inset into a fiat plate in the shock tube flow showed that the sheath-edge ion density is close to the predicted free-stream equilibrium ion density. The apparent ionization potential derived from electrostatic probe results decreased as p0 was reduced from 10 to 1 Torr.

Type
Articles
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allis, W. P., Buchsbaum, S. J. & Bers, A. 1963 Waves in Anisotropic Plasmas. Cambridge, Mass.: M.I.T. Press.Google Scholar
Aronsen, P. M. & Levine, D. 1967 U.S. Naval Ordinance Lab. NOLTR pp. 6779.Google Scholar
Bachynski, M. P., Johnston, T. W. & Schkarofsky, I. P. 1960 Proc. IRE 48, 347.CrossRefGoogle Scholar
Bredfeldt, H. R., Scharfman, W. E., Guthart, H. & Morita, T. 1967 AIAA Journal 5, 91.CrossRefGoogle Scholar
Brodwin, M. E. & Miller, D. A. 1964 IEEE Trans. MTT 12, 496.CrossRefGoogle Scholar
Collin, R. E. 1960 In Field Theory of Guided Waves. New York: McGraw-Hill.Google Scholar
Franklin, R. N. 1965 Ref. 29 Int. Conf. on the Microwave Behavior of Ferrimagnotics and Plasmas. IEE Conf. Publication No. 13.Google Scholar
Franklin, R. N. & Oldfield, M. L. G. 1969 Int. J. Electronics 27, 431.CrossRefGoogle Scholar
Gabriel, G. J. & Brodwin, M. E. 1965 IEEE Trans. MTT 13, 364.CrossRefGoogle Scholar
Gabriel, G. J. & Brodwin, M. E. 1966 IEEE Trans. MTT 14, 292.CrossRefGoogle Scholar
Heald, M. A. & Wharton, C. B. 1965 Plasma Diagnostics with Microwaves. New York: Wiley.CrossRefGoogle Scholar
Hilsenrath, J. & Klein, M. 1965 AEDC-TR-65-58.CrossRefGoogle Scholar
Hochstim, A. R. 1961 Planetary and Space Science 6, 79.CrossRefGoogle Scholar
Ingraham, J. C. 1965 7th Int. Conf. on Phenomena in Joniseci Gases 1, 57, Belgrade.Google Scholar
Laird, J. D. 1965 D. Phil. Thesis, Oxford.Google Scholar
Lewis, C. H. & Burgess, E. G. 1964 AEDC-TDR-64-43.CrossRefGoogle Scholar
Lin, S. C., Neal, R. A. & Fyfe, W. I. 1962 Phys. Fluids 5, 1633.CrossRefGoogle Scholar
Lin, S. C. & Teare, J. D. 1963 Phys. Fluids 6, 355.CrossRefGoogle Scholar
Mirels, H. 1963 Phys. Fluids 6, 1201.CrossRefGoogle Scholar
Mirels, H. 1964 AIAA Journal 2, 84.CrossRefGoogle Scholar
Woolgar, J. A. 1965 D. Phil. Thesis, Oxford.Google Scholar
Wright, J. K. 1961 Shock Tubes. London: Methuen.Google Scholar
Yamanaka, C. & Nakai, S. 1964 J. Phys. Soc. Japan 19, 2350.CrossRefGoogle Scholar