Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T19:53:21.920Z Has data issue: false hasContentIssue false

Modulational instability of geodesic-acoustic-mode packets

Published online by Cambridge University Press:  10 January 2025

D. Korger*
Affiliation:
Max Planck Institute for Plasma Physik, D-85748 Garching, Germany Ulm University, D-89081 Ulm, Germany
E. Poli
Affiliation:
Max Planck Institute for Plasma Physik, D-85748 Garching, Germany
A. Biancalani
Affiliation:
Léonard de Vinci Pôle Universitaire, Research Center, F-92916 Paris La Défense, France
A. Bottino
Affiliation:
Max Planck Institute for Plasma Physik, D-85748 Garching, Germany
O. Maj
Affiliation:
Max Planck Institute for Plasma Physik, D-85748 Garching, Germany
J.N. Sama
Affiliation:
Institut Jean Lamour UMR 7198, Université de Lorraine-CNRS, F-54011 Nancy, France
*
Email address for correspondence: david.korger@ipp.mpg.de

Abstract

Isolated, undamped geodesic-acoustic-mode (GAM) packets have been demonstrated to obey a (focusing) nonlinear Schrödinger equation (NLSE) (E. Poli, Phys. Plasmas, 2021). This equation predicts susceptibility of GAM packets to the modulational instability (MI). The necessary conditions for this instability are analysed analytically and numerically using the NLSE model. The predictions of the NLSE are compared with gyrokinetic simulations performed with the global particle-in-cell code ORB5, where GAM packets are created from initial perturbations of the axisymmetric radial electric field $E_r$. An instability of the GAM packets with respect to modulations is observed both in cases in which an initial perturbation is imposed and when the instability develops spontaneously. However, significant differences in the dynamics of the small scales are discerned between the NLSE and gyrokinetic simulations. These discrepancies are mainly due to the radial dependence of the strength of the nonlinear term, which we do not retain in the solution of the NLSE, and to the damping of higher radial spectral components $k_r$. The damping of the high-$k_r$ components, which develop as a consequence of the nonlinearity, can be understood in terms of Landau damping. The influence of the ion Larmor radius $\rho _i$ as well as the perturbation wavevector $k_\text {pert}$ on this effect is studied. For the parameters considered here the aforementioned damping mechanism hinders the MI process significantly from developing to its full extent and is strong enough to stabilize some of the (according to the undamped NLSE model) unstable wavevectors.

Type
Research Article
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, G. 2019 Nonlinear Fiber Optics, 6th edn. Academic Press.Google Scholar
Akhmediev, N. & Korneev, V. 1986 Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69 (2), 10891093.CrossRefGoogle Scholar
Benjamin, T.B. & Feir, J.E. 1967 The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27 (3), 417430.CrossRefGoogle Scholar
Biancalani, A., Bottino, A., Ehrlacher, C., Grandgirard, V., Merlo, G., Novikau, I., Qiu, Z., Sonnendrücker, E., Garbet, X. & Görler, T. 2017 Cross-code gyrokinetic verification and benchmark on the linear collisionless dynamics of the geodesic acoustic mode. Phys. Plasmas 24, 062512.CrossRefGoogle Scholar
Biancalani, A., Palermo, F., Angioni, C., Bottino, A. & Zonca, F. 2016 Decay of geodesic acoustic modes due to the combined action of phase mixing and landau damping. Phys. Plasmas 23, 112115.CrossRefGoogle Scholar
Bottino, A. & Sonnendrücker, E. 2015 Monte carlo particle-in-cell methods for the simulation of the Vlasov–Maxwell gyrokinetic equations. J. Plasma Phys. 81, 435810501.CrossRefGoogle Scholar
Brizard, A.J. & Hahm, T.S. 2007 Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys.79, 421.CrossRefGoogle Scholar
Chen, L., Lin, Z. & White, R. 2000 Excitation of zonal flow by drift waves in toroidal plasmas. Phys. Plasmas 7 (8), 31293132.CrossRefGoogle Scholar
Chen, L. & Zonca, F. 2016 Physics of alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88, 015008.CrossRefGoogle Scholar
Conway, G.D., Smolyakov, A.I. & Ido, T. 2021 Geodesic acoustic modes in magnetic confinement devices. Nucl. Fusion 62 (1), 013001.CrossRefGoogle Scholar
Copie, F., Randoux, S. & Suret, P. 2020 The physics of the one-dimensional nonlinear Schrödinger equation in fiber optics: Rogue waves, modulation instability and self-focusing phenomena. Rev. Phys. 5, 100037.CrossRefGoogle Scholar
Diamond, P.H., Itoh, S.-I., Itoh, K. & Hahm, T.S. 2005 Zonal flows in plasma – a review. Plasma Phys. Control. Fusion 47, R35.CrossRefGoogle Scholar
Dudley, J.M., Genty, G., Dias, F., Kibler, B. & Akhmediev, N. 2009 Modulation instability, akhmediev breathers and continuous wave supercontinuum generation. Opt. Express 17 (24), 2149721508.CrossRefGoogle ScholarPubMed
Ehrlacher, C., Garbet, X., Grandgirard, V., Sarazin, Y., Donnel, P., Caschera, E., Ghendrih, P. & Zarzoso, D. 2018 Contribution of kinetic electrons to gam damping. J. Phys.: Conf. Ser. 1125, 012010.Google Scholar
Faou, E. 2012 Geometric Numerical Integration and Schrödinger Equations, vol. 15. European Mathematical Society.CrossRefGoogle Scholar
Gao, Z., Itoh, K., Sanuki, H. & Dong, J. 2006 Multiple eigenmodes of geodesic acoustic mode in collisionless plasmas. Phys. Plasmas 13 (10).CrossRefGoogle Scholar
Hecht, E. 2012 Optics. Pearson Education India.Google Scholar
Itoh, K., Itoh, S.-I., Diamond, P., Hahm, T., Fujisawa, A., Tynan, G., Yagi, M. & Nagashima, Y. 2006 Physics of zonal flows. Phys. Plasmas 13 (5).CrossRefGoogle Scholar
Itoh, K., Itoh, S.-I., Diamond, P.H., Fujisawa, A., Yagi, M., Watari, T., Nagashima, Y. & Fukuyama, A. 2006 Geodesic acoustic eigenmodes. Plasma Fusion Res. 1, 037.CrossRefGoogle Scholar
Kengne, E., Liu, W. & Malomed, B.A. 2021 Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates. Phys. Rep. 899, 162.CrossRefGoogle Scholar
Kuznetsov, E.A., Rubenchik, A.M. & Zakharov, V.E. 1986 Soliton stability in plasmas and hydrodynamics. Phys. Rep. 142 (3), 103165.CrossRefGoogle Scholar
Lanti, E., Ohana, N., Tronko, N., Hayward-Schneider, T., Bottino, A., McMillan, B.F., Mishchenko, A., Scheinberg, A., Biancalani, A., Angelino, P., et al. 2020 Orb5: a global electromagnetic gyrokinetic code using the pic approach in toroidal geometry. Comput. Phys. Commun. 251, 107072.CrossRefGoogle Scholar
Murtaza, G. & Salahuddin, M. 1982 Modulational instability of ion acoustic waves in a magnetised plasma. Plasma Phys. 24 (5), 451.CrossRefGoogle Scholar
Nguyen, C., Garbet, X. & Smolyakov, A.I. 2008 Variational derivation of the dispersion relation of kinetic coherent modes in the acoustic frequency range in tokamaks. Phys. Plasmas 15, 112502.CrossRefGoogle Scholar
Palermo, F., Biancalani, A., Angioni, C., Zonca, F. & Bottino, A. 2016 Combined action of phase-mixing and landau damping causing strong decay of geodesic acoustic modes. Europhys. Lett. 115, 15001.CrossRefGoogle Scholar
Palermo, F., Conway, G., Poli, E. & Roach, C. 2023 Modulation behaviour and possible existence criterion of geodesic acoustic modes in tokamak devices. Nucl. Fusion 63 (6), 066010.CrossRefGoogle Scholar
Palermo, F., Poli, E. & Bottino, A. 2020 Complex eikonal methods applied to geodesic acoustic mode dynamics. Phys. Plasmas 27, 032507.CrossRefGoogle Scholar
Palermo, F., Poli, E., Bottino, A., Biancalani, A., Conway, G.D. & Scott, B. 2017 Radial acceleration of geodesic acoustic modes in the presence of a temperature gradient. Phys. Plasmas 24, 072503.CrossRefGoogle Scholar
Poli, E., Bottino, A., Maj, O., Palermo, F. & Weber, H. 2021 Nonlinear dynamics of geodesic-acoustic-mode packets. Phys. Plasmas 28, 112505.CrossRefGoogle Scholar
Poli, E., Palermo, F., Bottino, A., Maj, O. & Weber, H. 2020 Complex-Hamiltonian paraxial description of damped geodesic acoustic modes. Phys. Plasmas 27, 082505.CrossRefGoogle Scholar
Qiu, Z., Chen, L. & Zonca, F. 2009 Collisionless damping of short wavelength geodesic acoustic modes. Plasma Phys. Control. Fusion 51, 012001.CrossRefGoogle Scholar
Qiu, Z., Chen, L. & Zonca, F. 2018 Kinetic theory of geodesic acoustic modes in toroidal plasmas: a brief review. Plasma Sci. Technol. 20, 094004.CrossRefGoogle Scholar
Remoissenet, M. 1996 Solitons and modulational instability. Ann. Télécommun. 51, 297.CrossRefGoogle Scholar
Schamel, H. 1975 Analytic bgk modes and their modulational instability. J. Plasma Phys. 13 (1), 139145.CrossRefGoogle Scholar
Scott, A. 2006 Encyclopedia of Nonlinear Science. Routledge.CrossRefGoogle Scholar
Scott, B. 2003 a The geodesic transfer effect on zonal flows in tokamak edge turbulence. Phys. Lett. A 320 (1), 5362.CrossRefGoogle Scholar
Scott, B.D. 2003 b Computation of electromagnetic turbulence and anomalous transport mechanisms in tokamak plasmas. Plasma Phys. Control. Fusion 45, A385.CrossRefGoogle Scholar
Scott, B.D. 2005 Energetics of the interaction between electromagnetic exb turbulence and zonal flows. New J. Phys. 7, 92.CrossRefGoogle Scholar
Smolyakov, A.I., Bashir, M.F., Efimov, A.G., Yagi, M. & Miyato, N. 2016 On the dispersion of geodesic acoustic modes. Plasma Phys. Rep. 42, 407.CrossRefGoogle Scholar
Smolyakov, A.I., Nguyen, C. & Garbet, X. 2008 Kinetic theory of electromagnetic geodesic acoustic modes. Plasma Phys. Control. Fusion 50, 115008.CrossRefGoogle Scholar
Spatschek, K.-H. 2012 High Temperature Plasmas. Wiley.Google Scholar
Sugama, H. & Watanabe, T.-H. 2006 Collisionless damping of geodesic acoustic modes. J. Plasma Phys. 72, 825.CrossRefGoogle Scholar
Sugama, H. & Watanabe, T.-H. 2007 Collisionless damping of geodesic acoustic modes. J. Plasma Phys. 74, 139.CrossRefGoogle Scholar
Winsor, N., Johnson, J.L. & Dawson, J.M. 1968 Geodesic acoustic waves in hydromagnetic systems. Phys. Fluids 11, 2448.CrossRefGoogle Scholar
Zakharov, V.E. & Ostrovsky, L.A. 2009 Modulation instability: the beginning. Physica D 238 (5), 540548.CrossRefGoogle Scholar
Zhang, H.S. & Lin, Z. 2010 Trapped electron damping of geodesic acoustic mode. Phys. Plasmas 17, 072502.CrossRefGoogle Scholar
Zonca, F. & Chen, L. 2008 Radial structures and nonlinear excitation of geodesic acoustic modes. Europhys. Lett. 83, 35001.CrossRefGoogle Scholar
Zonca, F. & Chen, L. 2014 a Theory on excitations of drift alfvén waves by energetic particles. I. Variational formulation. Phys. Plasmas 21, 072120.CrossRefGoogle Scholar
Zonca, F. & Chen, L. 2014 b Theory on excitations of drift alfvén waves by energetic particles. II. The general fishbone-like dispersion relation. Phys. Plasmas 21, 072121.CrossRefGoogle Scholar
Zonca, F., Chen, L., Briguglio, S., Fogaccia, G., Milovanov, A.V., Qiu, Z., Vlad, G. & Wang, X. 2015 Energetic particles and multi-scale dynamics in fusion plasmas. Plasma Phys. Control. Fusion 57, 014024.CrossRefGoogle Scholar