Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T03:08:13.752Z Has data issue: false hasContentIssue false

Nonlinear decay of dispersive Alfvén wave and solar coronal heating

Published online by Cambridge University Press:  12 February 2010

SANJAY KUMAR
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi 110016, India (itd.sanjay@gmail.com)
R. P. SHARMA
Affiliation:
Centre for Energy Studies, Indian Institute of Technology, Delhi 110016, India (itd.sanjay@gmail.com)

Abstract

This paper presents a simple description of three-wave decay interactions involving a pump dispersive Alfvén wave (DAW), decay DAW and decay slow wave (SW) in a uniform magnetized plasma. When the ponderomotive nonlinearities are incorporated in DAW dynamics, the model equations governing the nonlinear excitation of the SWs by DAW in the low-β plasmas (β ≪ me/mi as applicable to solar corona) are given. The expressions for the coupling coefficients of the three-wave interaction have been derived. The growth rate of the instability is also calculated and found that the value of the decay growth time comes out to be of the order of milliseconds at the pump DAW amplitude B0y/B0 = 10−3.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Sagdeev, R. Z. and Galeev, A. A. 1969 Nonlinear Plasma Theory. New York: Benjamin.Google Scholar
[2]Petviashvili, V. I. and Pokhotelov, O. A. 1992 Solitary Waves in Plasmas and in the Atmosphere. Berlin, Germany: Gordon and Breach, p. 1.Google Scholar
[3]Shukla, P. K. and Stenflo, L. 1999 Nonlinear MHD Waves and Turbulence Lecture Notes in Solar Phys., Vol. 536 (ed. Passot, T. and Sulem, P.-L.). Berlin, Germany: Springer, p. 1.Google Scholar
[4]Hasegawa, A. and Chen, L. 1976 Phys. Rev. Lett. 36, 1362.CrossRefGoogle Scholar
[5]Brodin, G. and Stenflo, L. 1988 J. Plasma Phys. 39, 277.CrossRefGoogle Scholar
[6]Voitenko, Yu. M. and Goossens, M. 2002 Solar Phys. 209, 37.CrossRefGoogle Scholar
[7]Cho, J. and Lazarian, A. 2002 Phys. Rev. Lett. 88, 245001-1.Google Scholar
[8]Shukla, P. K. and Stenflo, L. 2005 Phys. Plasmas 12, 084502.CrossRefGoogle Scholar
[9]Voitenko, Y. and Goossens, M. 2004 Nonlinear Processes Geophys. 11, 535CrossRefGoogle Scholar
[10]Voitenko, Y. and Goossens, M. 2005 Phys. Rev. Lett. 94, 135003.CrossRefGoogle Scholar
[11]Brodin, G., Shukla, P. K. and Stenflo, L. 2008 J. Plasma Phys. 74, 99.CrossRefGoogle Scholar
[12]Brodin, G., Stenflo, L. and Shukla, P. K. 2007 J. Plasma Phys. 73, 9.CrossRefGoogle Scholar
[13]Brodin, G. and Stenflo, L. 2009 J. Plasma Phys. 75, 9.CrossRefGoogle Scholar
[14]Voitenko, Y. M. and Goossens, M. 2000 Astron. Astrophys. 357, 1073.Google Scholar
[15]Onishchenko, O. G., Pokhotelov, O. A., Sagdeev, R. Z., Stenflo, L., Treumann, R. A. and Balikhin, M. A. 2004 J. Geophys. Res. 109, A03306.Google Scholar
[16]Stix, T. H. 1992 Waves in Plasmas. New York: A.I.P.Google Scholar
[17]Shukla, A., Sharma, R. P. and Malik, M. 2004 Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[18]Bellan, P. M. and Stasiewicz, K. 1998 Phys. Rev. Lett. 80, 3523.CrossRefGoogle Scholar
[19]Shukla, P. K. and Stenflo, L. 1999 Phys. Plasmas 6, 4120.CrossRefGoogle Scholar
[20]Shukla, P. K. and Stenflo, L. 2000 Phys. Plasmas 7, 2738.CrossRefGoogle Scholar
[21]Shukla, A. and Sharma, R. P. 2002 J. Atm. Solar-Terrestrial Phys. 64, 66.Google Scholar
[22]Singh, H. D. and Sharma, R. P. 2006 Phys. Plasmas 13, 012902.CrossRefGoogle Scholar
[23]Champeaux, S., Gazol, A., Passot, T. and Sulem, P. L. 1996 In: Proc. of the Workshop on Nonlinear MHD Waves and Turbulence, Nice, France, 1–4 December 1998 (ed. Passot, T. and Sulem, P. L.). Heidelberg, Germany: Springer, pp. 5582.Google Scholar