Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T03:51:05.175Z Has data issue: false hasContentIssue false

Nonlinear evolution of the sheet pinch

Published online by Cambridge University Press:  13 March 2009

W. H. Matthaeus
Affiliation:
Physics Department, The College of William and Mary, Williamsburg, Virginia 23185
David Montgomery
Affiliation:
Physics Department, The College of William and Mary, Williamsburg, Virginia 23185

Abstract

An incompressible, dissipative numerical code of the spectral type is used to follow the nonlinear evolution of a magnetohydrodynamic sheet pinch in two spatial dimensions. The evolution involves considerable turbulent activity in the electric current field, with the excited spatial scales ranging from the size of the containing volume down to the dissipation lengths of the magnetic and velocity fields. Strong current filamentation near magnetic X-points is observed, as is lsquo;jetting’, or expulsion of magnetofluid from the vicinity of the X-point parallel to the current sheet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barston, E. M. 1969 a Comm. Pure & Appl. Math. 22, 627.CrossRefGoogle Scholar
Barston, E. M. 1969 b Phys. Fluids, 12, 2162.CrossRefGoogle Scholar
Drake, J. F. & Lee, Y. C. 1977 Phys. Fluids, 20, 1341.CrossRefGoogle Scholar
Dungey, J. W. 1958 Cosmic Electrodynamics, pp. 98102. Cambridge University Press.Google Scholar
Finn, J. M. & Kaw, P. K. 1977 Phys. Fluids, 20, 72.CrossRefGoogle Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Phys. Fluids, 6, 459.CrossRefGoogle Scholar
Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.CrossRefGoogle Scholar
Fyfe, D., Joyce, G. & Montgomery, D. 1977 a J. Plasma Phys. 17, 317.CrossRefGoogle Scholar
Fyfe, D., Montgomery, D. & Joyce, G. 1977 b J. Plasma Phys. 17, 369.CrossRefGoogle Scholar
Giovanelli, R. G. 1947 Mon. Notices Roy. Astron. Soc. 107, 338.CrossRefGoogle Scholar
Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 J. Fluid Mech. 66, 417.CrossRefGoogle Scholar
Matthaeus, W. H. & Montgomery, P. 1979 Proceedings of Scientific Computer Information Exchange Conference, Livermore, CA. CONF-79092, (ed. Rodrigue, G..).Google Scholar
Orszag, S. A. 1971 Stud. Appl. Math. 50, 293.CrossRefGoogle Scholar
Orszag, S. A. & Tang, C.-M. 1979 J. Fluid Mech. 90, 129.CrossRefGoogle Scholar
Parker, E. N. 1963 Astrophys. J. Suppl., Ser. 8, p. 177.Google Scholar
Parker, E. N. 1973 J. Plasma Phys. 9, 49.CrossRefGoogle Scholar
Patterson, G. S. & Orszag, S. A. 1971 Phys. Fluids, 14, 2358.Google Scholar
Petschek, H. E. 1964 AAS–NASA symposium on the Physics of Solar Flares, p. 425439. NASA Special Publication SP-50.Google Scholar
Pritchett, P. L. & Wu, C. C. 1979 UCLA Report PPG-392.Google Scholar
Pritchett, P. L., Lee, Y. C. & Drake, J. F. 1979 Linear Analysis of the Double Tearing Mode. University of Maryland preprint.Google Scholar
Rutherford, P. H. 1973 Phys. Fluids, 16, 1903.CrossRefGoogle Scholar
Sato, T. & Hayashi, T. 1979 Phys. Fluids, 22, 1189.CrossRefGoogle Scholar
Schnack, D. & Killeen, J. 1978 Theoretical and Computational Plasma Physics, p. 337. IAEA.Google Scholar
Schnack, D. & Killeen, J. 1979 Paper 3B31 in Proceedings of 1979 Sherwood Meeting on Theoretical Aspects of Controlled Thermonuclear Research, Mt. Pocono, PA. U.S. Department of Energy.Google Scholar
Stix, T. H. 1976 Phys. Rev. Lett. 36, 521.CrossRefGoogle Scholar
Sweet, P. A. 1958 Electromagnetic Phenomena in Cosmical Physics (ed. Lehnert, B.), pp. 123134. Cambridge University Press.Google Scholar
Vasyliunas, V. M. 1975 Rev. Geophys. & Space Phys. 13, 303.CrossRefGoogle Scholar
Yeh, T. & Axford, W. J. 1970 J. Plasma Phys. 4, 207.CrossRefGoogle Scholar