Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T10:44:56.302Z Has data issue: false hasContentIssue false

A note on the application of Whitham's method to nonlinear waves in dispersive media

Published online by Cambridge University Press:  13 March 2009

K. B. Dysthe
Affiliation:
University of Tromsø, Norway

Abstract

In this paper, a method developed by Whitham for obtaining equations governing the slow variation of finite-amplitude wave trains, is slightly modified. The relevant equations describing wave-wave interaction, and self-action are derived. The stability of a finite-amplitude wave train is treated in two different ways. The possibility of having a ‘solitary modulation’ on a finite-amplitude wave train is pointed out.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S. A., Sukhorukov, A. P. & Khoklov, R. V. 1966 Soviet Phys. JETP, 23, 1025.Google Scholar
Askne, J. 1971 Int. J. Elect. 32, 573.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 a J. Fluid Mech. 27, 417.CrossRefGoogle Scholar
Benjamin, T. B. & Feir, J. E. 1967 b Proc. Roy. Soc. A 299, 59.Google Scholar
Chiao, R. Y., Garmire, E. & Townes, C. H. 1964 Phys. Rev. Lett. 13, 479.CrossRefGoogle Scholar
Dougherty, J. P. 1970 J. Plasma Phys. 4, 61.Google Scholar
Dysthe, K. B. 1966 Nuclear Fusion, 6, 215.CrossRefGoogle Scholar
Dysthe, K. B. 1968 Phys. Lett. 27 A, 59.CrossRefGoogle Scholar
Dysthe, K. B. 1970 Int. J. Elect. 29, 5, 401.Google Scholar
Galloway, J. J. 1970 Stanford University Inst. for Plasma Phys. Res. Rep. 362.Google Scholar
Galloway, J. J. & Crawford, F. W. 1970 Proc. 4th European Conf. on Controlled Fusion and Plasma Phys., Rome, p. 161. Rome: CNEN.Google Scholar
Galloway, J. J. & Kim, H. 1971 J. Plasma Phys. 6, 53.Google Scholar
Harker, K. J. & Crawford, F. W. 1968 J. Appl. Phys. 39, 5959.Google Scholar
Harker, K. J. & Crawford, F. W. 1969 a J. Appl. Phys. 90, 3247.CrossRefGoogle Scholar
Harker, K. J. & Crawford, F. W. 1969 b J. Geophys. Res. 74, 5029.Google Scholar
Harker, K. J. & Crawford, F. W. 1970 J. Geophys. Res. 75, 5459.Google Scholar
Hasselmann, K. 1966 Rev. Geophys. 4, 1.Google Scholar
Karpman, V. I. & Krushkal, E. M. 1969 Soviet Phys. JETP, 28, 277.Google Scholar
Korteweg, D. J. & De, Vries G. 1895 Phil. Mag. 39, 422.CrossRefGoogle Scholar
Leontovich, M. A. 1966 Reviews of Plasma Physics vol.4. New York: Consultants Bureau.Google Scholar
Manley, J. M. & Rowe, H. E. 1956 Proc. I.R.E. 44, 904.CrossRefGoogle Scholar
Sturrock, P. A. 1960 Ann. Phys. 9, 422.CrossRefGoogle Scholar
Sturrock, P. A. 1961 J. Nucl. Eng. C 2, 158.Google Scholar
Taniuti, T. & Yajima, N. 1969 J. Math. Phys. 10, 1369.Google Scholar
Whitham, G. B. 1965 a Proc. Roy. Soc. A 283.Google Scholar
Whitham, G. B. 1965 b J. Fluid Mech. 22, 273.CrossRefGoogle Scholar
Whitham, G. B. 1967 Proc. Roy. Soc. A 299, 6.Google Scholar