Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T12:03:11.515Z Has data issue: false hasContentIssue false

A note on the trapped electron dust grain current

Published online by Cambridge University Press:  01 October 2009

ABDERREZAK BERBRI
Affiliation:
Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences–Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111, Algeria (mouloudtribeche@yahoo.fr)
MOULOUD TRIBECHE
Affiliation:
Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences–Physics, University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111, Algeria (mouloudtribeche@yahoo.fr)

Abstract

It is shown that when the non-isothermal trapped electron current is rederived based on the orbit-limited motion theory, the variable dust charge can be expressed in terms of the Lambert function. One can then take advantage of this new transcendental function to illustrate how variable-charge nonlinear trapped dust modes can be investigated semi-analytically.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Verheest, F. 2000 Waves in Dusty Space Plasmas. Dordrecht: Kluwer.CrossRefGoogle Scholar
[2]Shukla, P. K. and Mamun, A. A. 2002 Introduction to Dusty Plasma Physics. Bristol: Institute of Physics.CrossRefGoogle Scholar
[3]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
[4]Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
[5]Tribeche, M., Houili, H. and Zerguini, T. H. 2002 Phys. Plasmas 9, 419.CrossRefGoogle Scholar
[6]Nejoh, Y. N. 1997 Phys. Plasmas 4, 2813.CrossRefGoogle Scholar
[7]Kakati, M. and Goswami, K. S. 1998 Phys. Plasmas 5, 4508.CrossRefGoogle Scholar
[8]Nejoh, Y. N. 1998 Nonlinear Process. Geophys. 5, 53.CrossRefGoogle Scholar
[9]Ghosh, S., Sarkar, S., Khan, M. and Gupta, M. R. 2002 Phys. Plasmas 9, 1150.CrossRefGoogle Scholar
[10]El-Labany, S. K., Moslem, W. M. and Mowafy, A. E. 2003 Phys. Plasmas 10, 4217.CrossRefGoogle Scholar
[11]El-Labany, S. K. and El-Taibany, W. F. 2003 Phys. Plasmas 10, 4685.CrossRefGoogle Scholar
[12]El-Labany, S. K., El-Taibany, W. F., Mamun, A. A. and Moslem, W. M. 2004 Phys. Plasmas 11, 926.CrossRefGoogle Scholar
[13]El-Labany, S. K., Moslem, W. M., El-Shewy, E. K. and Mowafy, A. E. 2005 Chaos Solitons Fractals 23, 581.CrossRefGoogle Scholar
[14]El-Labany, S. K. and El-Shamy, E. F. 2005 Phys. Plasmas 12, 042301.CrossRefGoogle Scholar
[15]Moslem, W. M., El-Taibany, W. F., El-Shewy, E. K. and El-Shamy, E. F. 2005 Phys. Plasmas 12, 052318.CrossRefGoogle Scholar
[16]El-Shamy, E. F. 2005 Chaos Solitons Fractals 25, 665.CrossRefGoogle Scholar
[17]Moslem, W. M. and El-Taibany, W. F. 2005 Phys. Plasmas 12, 122309.CrossRefGoogle Scholar
[18]Moslem, W. M. 2006 Phys. Lett. A 351, 290.CrossRefGoogle Scholar
[19]Chowdhury, K. R., Mishra, A. P. and Chowdhury, A. R. 2006 Chaos Solitons Fractals 29, 125.CrossRefGoogle Scholar
[20]Tribeche, M., Ait Gougam, L. and Zerguini, T. H. 2007 Phys. Scripta 75, 354.CrossRefGoogle Scholar
[21]Schamel, H. 1986 Phys. Rep. 140, 161.CrossRefGoogle Scholar
[22]Chen, F. F. 1965 In: Plasma Diagnostic Techniques (ed. Huddlestone, R. H. and Leonard, S. L.). New York: Academic, ch. 4.Google Scholar
[23]Whipple, E. C. 1981 Rep. Prog. Phys. 44, 1198.CrossRefGoogle Scholar
[24]Barnes, M. S., Keller, J. H., Forster, J. C., O'Neill, J. A. and Coultas, D. K. 1992 Phys. Rev. Lett. 68, 313.CrossRefGoogle Scholar
[25]Hayes, B. 2005 Am. Sci. 93, 104.CrossRefGoogle Scholar
[26]Schamel, H. Private communication.Google Scholar