Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T03:25:20.016Z Has data issue: false hasContentIssue false

Novel aspects of direct laser acceleration of relativistic electrons

Published online by Cambridge University Press:  04 May 2015

A. V. Arefiev*
Affiliation:
Institute for Fusion Studies, The University of Texas, Austin, TX 78712, USA
A. P. L. Robinson
Affiliation:
Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot, OX11 0QX, UK
V. N. Khudik
Affiliation:
Institute for Fusion Studies, The University of Texas, Austin, TX 78712, USA
*
Email address for correspondence: alexey@austin.utexas.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We examine the impact of several factors on electron acceleration by a laser pulse and the resulting electron energy gain. Specifically, we consider the role played by: (1) static longitudinal electric field, (2) static transverse electric field, (3) electron injection into the laser pulse, and (4) static longitudinal magnetic field. It is shown that all of these factors lead, under certain conditions, to a considerable electron energy gain from the laser pulse. In contrast with other mechanisms such as wakefield acceleration, the static electric fields in this case do not directly transfer substantial energy to the electron. Instead, they reduce the longitudinal dephasing between the electron and the laser beam, which then allows the electron to gain extra energy from the beam. The mechanisms discussed here are relevant to experiments with under-dense gas jets, as well as to experiments with solid-density targets involving an extended pre-plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

References

Albertazzi, B. et al. 2014 Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science 346 (6207), 325.Google Scholar
Arefiev, A. V., Breizman, B. N., Schollmeier, M. and Khudik, V. N. 2012 Parametric amplification of laser-driven electron acceleration in underdense plasma. Phys. Rev. Lett. 108, 145004.Google Scholar
Arefiev, A. V., Cochran, G. E., Schumacher, D. W., Robinson, A. P. L. and Chen, G. 2015 Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field. Phys. Plasmas 22, 013103.Google Scholar
Arefiev, A. V., Khudik, V. N. and Schollmeier, M. 2014 Enhancement of laser-driven electron acceleration in an ion channel. Phys. Plasmas 21 (3), 033104.Google Scholar
Boyd, T. J. M. and Sanderson, J. J. 2003 The Physics of Plasmas. Cambridge, UK: Cambridge University Press.Google Scholar
Chen, H. et al. 2010 Relativistic quasimonoenergetic positron jets from intense laser-solid interactions. Phys. Rev. Lett. 105, 015003.Google Scholar
Chen, M., Sheng, Z.-M., Zheng, J., Ma, Y.-Y., Bari, M., Li, Y.-T. and Zhang, J. 2006 Surface electron acceleration in relativistic laser-solid interactions. Opt. Exp. 14 (7), 3093.Google Scholar
Courtois, C., Ash, A. D., Chambers, D. M., Grundy, R. A. D. and Woolsey, N. C. 2005 Creation of a uniform high magnetic-field strength environment for laser-driven experiments. J. Appl. Phys. 98 (5), 054913.Google Scholar
Daido, H., Miki, F., Mima, K., Fujita, M., Sawai, K., Fujita, H., Kitagawa, Y., Nakai, S. and Yamanaka, C. 1986 Generation of a strong magnetic field by an intense co2 laser pulse. Phys. Rev. Lett. 56, 846.Google Scholar
Flippo, K. et al. 2010 Omega ep, laser scalings and the 60 mev barrier: first observations of ion acceleration performance in the 10 picosecond kilojoule short-pulse regime. J. Phys.: Conf. Ser. 244, 022033.Google Scholar
Fujioka, S. et al. 2013 Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Sci. Rep. 3, 1170.Google Scholar
Fujioka, S. et al. 2012 High-energy-density plasmas generation on gekko-lfex laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Phys. Control. Fusion 54 (12), 124042.Google Scholar
Gaillard, S. A. et al. 2011 Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targetsa) . Phys. Plasmas 18 (5), 056710.Google Scholar
Kneip, S. et al. 2008 Observation of synchrotron radiation from electrons accelerated in a petawatt-laser-generated plasma cavity. Phys. Rev. Lett. 100, 105006.Google Scholar
Krygier, A. G., Schumacher, D. W. and Freeman, R. R. 2014 On the origin of super-hot electrons from intense laser interactions with solid targets having moderate scale length preformed plasmas. Phys. Plasmas (1994-present) 21 (2), 023112.Google Scholar
Landau, L. D. and Liftshitz, E. M. 1960 Mechanics. Butterworth Heinemann, Oxford, UK.Google Scholar
Liu, B., Wang, H. Y., Liu, J., Fu, L. B., Xu, Y. J., Yan, X. Q. and He, X. T. 2013 Generating overcritical dense relativistic electron beams via self-matching resonance acceleration. Phys. Rev. Lett. 110, 045002.Google Scholar
Liu, H., He, X. T. and Chen, S. G. 2004 Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields. Phys. Rev. E 69, 066409.Google Scholar
Mangles, S. P. D. et al. 2005 Electron acceleration in cavitated channels formed by a petawatt laser in low-density plasma. Phys. Rev. Lett. 94, 245001.Google Scholar
Meyer-ter Vehn, J. and Sheng, Z. M. 1999 On electron acceleration by intense laser pulses in the presence of a stochastic field. Phys. Plasmas 6 (3), 641.Google Scholar
Naseri, N., Pesme, D., Rozmus, W. and Popov, K. 2012 Channeling of relativistic laser pulses, surface waves, and electron acceleration. Phys. Rev. Lett. 108, 105001.Google Scholar
Paradkar, B. S., Krasheninnikov, S. I. and Beg, F. N. 2012 Mechanism of heating of pre-formed plasma electrons in relativistic laser-matter interaction. Phys. Plasmas 19 (6), 060703.Google Scholar
Pomerantz, I. et al. 2014 Ultrashort pulsed neutron source. Phys. Rev. Lett. 113, 184801.Google Scholar
Pukhov, A. 2003 Strong field interaction of laser radiation. Rep. Prog. Phys. 66, 47101.Google Scholar
Pukhov, A., Sheng, Z.-M. and Meyer-ter Vehn, J. 1999 Particle acceleration in relativistic laser channels. Phys. Plasmas 6 (7), 2847.Google Scholar
Robinson, A. P. L., Arefiev, A. V. and Neely, D. 2013 Generating ‘superponderomotive’ electrons due to a non-wake-field interaction between a laser pulse and a longitudinal electric field. Phys. Rev. Lett. 111, 065002.Google Scholar
Schollmeier, M. et al. 2015 Laser-to-hot-electron conversion limitations in relativistic laser matter interactions due to multi-picosecond dynamics. Phys. Plasmas 22, 043116.Google Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovanovic, M. S., Taguchi, T., Zhang, J. and ter Vehn, J. Meyer 2002 Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.Google Scholar
Tsakiris, G. D., Gahn, C. and Tripathi, V. K. 2000 Laser induced electron acceleration in the presence of static electric and magnetic fields in a plasma. Phys. Plasmas 7 (7), 3017.Google Scholar
Willingale, L. et al. 2013 Surface waves and electron acceleration from high-power, kilojoule-class laser interactions with underdense plasma. New J. Phys. 15, 025023.Google Scholar