Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T05:16:35.992Z Has data issue: false hasContentIssue false

On the drag on an object immersed in a flowing plasma: the control surface approach

Published online by Cambridge University Press:  01 October 2007

J. E. ALLEN*
Affiliation:
University College, Oxford OX1 4BH, UKOCIAM, Mathematical Institute, Oxford OX1 3LB, UKBlackett Laboratory, Imperial College, London SW7 2BZ, UK (allenj@maths.ox.ac.uk)

Abstract

A theory of the drag force acting on an object immersed in a flowing plasma is presented. A control surface method is developed following the approach used in fluid mechanics rather than the linear dielectric response approach found in the literature. The situation examined is one in which the directed velocity of the ions dominates their thermal velocities; a cold ion model is employed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Bohm, D. 1949 The Characteristics of Electrical Discharges in Magnetic Fields (ed. Guthrie, A. and Wakerling, R. K.). New York: McGraw-Hill, ch. 3.Google Scholar
[2]Stangeby, P. C. and Allen, J. E. 1971 Transonic plasma flow past an obstacle. J. Plasma Phys. 6, 19.CrossRefGoogle Scholar
[3]Duncan, W. J., Thom, A. S. and Young, A. D. 1970 Mechanics of Fluids, 2nd edn. London: Edward Arnold.Google Scholar
[4]Jackson, J. D. 1962 Classical Electrodynamics. New York: Wiley.Google Scholar
[5]Fortov, V. E., Ivlev, A. V., Khrapak, S. A., Khrapak, A. G. and Morfill, G. E. 2005 Complex (dusty) plasmas; Current status, open issues, perspectives. Phys. Rep. 421, 1103.Google Scholar
[6]Melzer, A. 2001 Laser manipulation of particles in dusty plasmas. Plasma Sources Sci. Technol. 10, 303310.Google Scholar
[7]Allen, J. E. 1992 Probe theory—the orbital motion approach. Phys. Scripta 45, 497503.CrossRefGoogle Scholar
[8]Khrapak, S. A., Ivlev, A. V., Zhadanov, S. K. and Morfill, G. E. 2005 Hybrid approach to the ion drag force. Phys. Plasmas 12, 042308 18.Google Scholar
[9]Hutchinson, I. H. 2005 Ion collection by a sphere in a flowing plasma: floating potential and drag force. Plasma Phys. Control. Fusion 47, 71.CrossRefGoogle Scholar
[10]Allen, J. E. 1974 Probe measurements. Plasma Physics (ed. Keen, B. E.). London and Bristol: Institute of Physics, ch. 5.Google Scholar
[11]Arinaminpathy, N., Allen, J. E. and Ockendon, J. R. 2005 On the disturbance caused by a stationary dust grain in a flowing plasma. New Vistas in Dusty Plasmas. In: Proc. Int. Conf. on the Physics of Dusty Plasmas (AIP Conf. Proc., 799). New York: American Institute of Physics, p. 275.Google Scholar
[12]Pai, S. I. 1959 Introduction to the Theory of Compressible Flow. New York: Van Nostrand.Google Scholar
[13]Tomme, E. B., Annaratone, B. M. and Allen, J. E. 2000 Damped dust oscillations as a plasma sheath diagnostic. Plasma Sources Sci. Technol. 9, 87.Google Scholar
[14]Annaratone, B. M., Allen, M. W. and Allen, J. E. 1992 Ion currents to cylindrical Langmuir probes in r.f. plasmas. J. Phys. D: Appl. Phys. 25, 417424, 1851.CrossRefGoogle Scholar
[15]Martin, J. D., Coppins, M., Counsell, G. F. and Allen, J. E. 2005 Positive tungsten dust in tokamaks. New Vistas in Dusty Plasmas. In Proc. Int. Conf. on the Physics of Dusty Plasmas (AIP Conf. Proc., 799). New York: American Institute of Physics, p. 255.Google Scholar